Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.unb.br/handle/10482/33606
Ficheros en este ítem:
Fichero Tamaño Formato  
ARTIGO_FourierAnalysisNonlinear.pdf2,03 MBAdobe PDFView/Open
Título : Fourier analysis of nonlinear pendulum oscillations
Autor : Singh, Inderpreet
Arun, Palakkandy
Lima, Fábio
Assunto:: Pêndulo
Oscilações
Fourier, Séries de
Fecha de publicación : 2018
Editorial : Sociedade Brasileira de Física
Citación : SINGH, Inderpreet; ARUN, Palakkandy; LIMA, Fabio. Fourier analysis of nonlinear pendulum oscillations. Revista Brasileira de Ensino de Física, São Paulo, v. 40, n. 1, e1305, 2018. DOI: http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172018000100405&lng=en&nrm=iso. Acesso em: 11 mar. 2019. Epub July 20, 2017.
Abstract: Since the times of Galileo, it is well-known that a simple pendulum oscillates harmonically for any sufficiently small angular amplitude. Beyond this regime and in absence of dissipative forces, the pendulum period increases with amplitude and then it becomes a nonlinear system. Here in this work, we make use of Fourier series to investigate the transition from linear to nonlinear oscillations, which is done by comparing the Fourier coefficient of the fundamental mode (i.e., that for the small-angle regime) to those corresponding to higher frequencies, for angular amplitudes up to 9 0 ∘. Contrarily to some previous works, our results reveal that the pendulum oscillations are not highly anharmonic for all angular amplitudes. This kind of analysis for the pendulum motion is of great pedagogical interest for both theoretical and experimental classes on this theme.
Licença:: Licença Creative Commons (CC BY)
DOI: http://dx.doi.org/10.1590/1806-9126-rbef-2017-0151
Appears in Collections:IF - Artigos publicados em periódicos

Show full item record Recommend this item " class="statisticsLink btn btn-primary" href="/handle/10482/33606/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.