Skip navigation
Veuillez utiliser cette adresse pour citer ce document : https://repositorio.unb.br/handle/10482/45071
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorAlbuquerque, José Carlos de-
dc.contributor.authorSantos, Gelson Conceição Gonçalves dos-
dc.contributor.authorFigueiredo, Giovany de Jesus Malcher-
dc.date.accessioned2022-10-26T23:16:30Z-
dc.date.available2022-10-26T23:16:30Z-
dc.date.issued2021-03-08-
dc.identifier.citationALBUQUERQUE, José Carlos de; SANTOS, Gelson G. dos; FIGUEIREDO, Giovany M. Existence and behavior of positive solutions for a class of linearly coupled systems with discontinuous nonlinearities in RN. Journal of Fixed Point Theory and Applications, v. 23, n.2, maio 2021. DOI 10.1007/s11784-021-00858-0. Disponível em: https://link.springer.com/article/10.1007/s11784-021-00858-0. Acesso em: 26 out. 2022.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/45071-
dc.language.isoInglêspt_BR
dc.publisherSpringer Naturept_BR
dc.rightsAcesso Restritopt_BR
dc.titleExistence and behavior of positive solutions for a class of linearly coupled systems with discontinuous nonlinearities in RNpt_BR
dc.typeArtigopt_BR
dc.subject.keywordSistemas linearmente acopladospt_BR
dc.subject.keywordLipschitz, Função dept_BR
dc.subject.keywordSoluções positivaspt_BR
dc.identifier.doihttps://doi.org/10.1007/s11784-021-00858-0pt_BR
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s11784-021-00858-0pt_BR
dc.description.abstract1In this paper we are concerned with existence and behavior of positive solutions to the following class of linearly coupled elliptic systems with discontinuous nonlinearities −Δu+V1(x)u=H(u−β)f1(u)+a(x)v,−Δv+V2(x)v=H(v−β)f2(v)+a(x)u,u,v∈D1,2(RN)∩W2,2loc(RN),in RN,in RN,(S)β where β≥0, N≥3, V1,V2, a:RN→R are positive potentials, which can vanish at infinity, f1,f2:R→R are continuous functions and H is the Heaviside function, i.e, H(t)=0 if t≤0, H(t)=1 if t>0. We use a suitable nonsmooth truncation, for systems, to apply a version of the penalization method of Del Pino and Felmer (Calc Var Partial Differ Equ 4:121–137, 1996) combined with the Mountain Pass Theorem for locally Lipschitz functional to obtain a positive solution (uβ,vβ) of (S)β in multivalued sense. In addition, we show that (uβ,vβ)→(u,v) in D1,2(RN)×D1,2(RN) as β→0+, where (u, v) is a positive solution of the continuous system (S)0 in strong sense.pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-2273-6054pt_BR
dc.identifier.orcidhttps://orcid.org/0000-0003-1697-1592pt_BR
dc.contributor.emailmailto:josecarlos.melojunior@ufpe.brpt_BR
dc.contributor.emailmailto:gelsonsantos@ufpa.brpt_BR
dc.contributor.emailmailto:giovany@unb.brpt_BR
Collection(s) :MAT - Artigos publicados em periódicos e preprints

Affichage abbrégé Recommander ce document " class="statisticsLink btn btn-primary" href="/handle/10482/45071/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.