Skip navigation
Veuillez utiliser cette adresse pour citer ce document : https://repositorio.unb.br/handle/10482/41107
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorMelo Neto, Carlos A. M. de-
dc.contributor.authorPereira Júnior, Marcelo Lopes-
dc.contributor.authorRibeiro Júnior, Luiz Antônio-
dc.contributor.authorRoncaratti, Luiz F.-
dc.contributor.authorSilva Filho, Demétrio Antônio da-
dc.date.accessioned2021-06-07T19:24:10Z-
dc.date.available2021-06-07T19:24:10Z-
dc.date.issued2021-
dc.identifier.citationMELO NETO, Carlos A. M. de et al. Theoretical prediction of electron mobility in birhodanine crystals and their sulfur analogs. Chemical Physics Letters, v. 763, 138226, 2021. DOI: https://doi.org/10.1016/j.cplett.2020.138226.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/41107-
dc.language.isoInglêspt_BR
dc.publisherElsevier B.V.pt_BR
dc.rightsAcesso Restritopt_BR
dc.titleTheoretical prediction of electron mobility in birhodanine crystals and their sulfur analogspt_BR
dc.typeArtigopt_BR
dc.subject.keywordBirodaninapt_BR
dc.subject.keywordTransporte de cargapt_BR
dc.subject.keywordCristais molecularespt_BR
dc.identifier.doihttps://doi.org/10.1016/j.cplett.2020.138226pt_BR
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S000926142031126X?via%3Dihub-
dc.description.abstract1Molecular crystals compose the current state of the art when it comes to organic-based optoelectronic applications. Charge transport is a crucial aspect of their performance. The ability to predict accurate electron mobility is needed in designing novel organic semiconducting materials. In the present work, the Semi-Classical Marcus (SCM) and Marcus–Levich–Jortner (MLJ) hopping models are employed to numerically describe the charge mobility in six distinct birhodanine-like crystals. These materials were recently used in n-channel organic transistors as electron transporting layers. Results have revealed that the MLJ approach predicts electron mobilities in good agreement with the experiment, whereas SCM underestimates this parameter. Remarkably, we found for one of the birhodanine derivatives studied here average electron mobility of 0.14 cm V−1s−1, which agrees with the one reported in experimental investigations. Moreover, it was identified that the MLJ approach presents a strong dependency on external reorganization energy. For SCM, a change in the reorganization energy value has a small impact on mobility, while for MLJ it impacts the average electron mobility that exponentially decays by increasing the external reorganization energy. Importantly, we highlight the primary source of the differences in predicting the electron mobility presented by both approaches, providing useful details that will help the selection of one of these two models for study different species of organic molecular crystals.pt_BR
Collection(s) :FUP - Artigos publicados em periódicos
IF - Artigos publicados em periódicos

Affichage abbrégé Recommander ce document " class="statisticsLink btn btn-primary" href="/handle/10482/41107/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.