Skip navigation
Veuillez utiliser cette adresse pour citer ce document : https://repositorio.unb.br/handle/10482/36547
Fichier(s) constituant ce document :
Fichier TailleFormat 
ARTIGO_SimpleAccuratePeriodic.pdf3,92 MBAdobe PDFVoir/Ouvrir
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorLima, Fábio Menezes de Souzapt_BR
dc.date.accessioned2020-01-24T10:31:44Z-
dc.date.available2020-01-24T10:31:44Z-
dc.date.issued2019pt_BR
dc.identifier.citationLima, Fábio Menezes de Souza. Simple but accurate periodic solutions for the nonlinear pendulum equation. Revista Brasileira de Ensino de Física, v. 41, n. 1, e20180202, 2019. DOI: https://doi.org/10.1590/1806-9126-rbef-2018-0202. Disponível em: http://scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172019000100413. Acesso em: 23 jan. 2020.pt_BR
dc.identifier.urihttps://repositorio.unb.br/handle/10482/36547-
dc.language.isoenpt_BR
dc.publisherSociedade Brasileira de Físicapt_BR
dc.rightsAcesso Abertopt_BR
dc.titleSimple but accurate periodic solutions for the nonlinear pendulum equationpt_BR
dc.typeArtigopt_BR
dc.subject.keywordPêndulopt_BR
dc.subject.keywordVibraçãopt_BR
dc.subject.keywordFourier, Séries dept_BR
dc.subject.keywordFunções elípticaspt_BR
dc.rights.license(CC BY) - LIcença Creative Commons.-
dc.identifier.doihttps://doi.org/10.1590/1806-9126-rbef-2018-0202pt_BR
dc.description.abstract1Despite its elementary structure, the simple pendulum oscillations are described by a nonlinear differential equation whose exact solution for the angular displacement from vertical as a function of time cannot be expressed in terms of an elementary function, so either a numerical treatment or some analytical approximation is ultimately demanded. Such solutions have been thoroughly investigated due to the abundance of distinct pendular systems in nature and, more recently, due to the availability of automatic data acquisition systems in undergraduate laboratories. However, it is well-known that numerical solutions to differential equations usually loose accuracy (due to accumulation of roundoff errors) and polynomial approximations diverge after long time intervals. In this work, I take a few terms of the Fourier series expansion of the elliptic function sn ( u ; k ) as a source of accurate periodic solutions for the pendulum equation. Interestingly, these approximations remain accurate for arbitrarily long time intervals, even for large amplitudes, which shows its adequacy for the analysis of experimental data gathered in classical mechanics classes.-
dc.identifier.orcidhttp://orcid.org/0000-0001-5884-6621-
Collection(s) :IF - Artigos publicados em periódicos

Affichage abbrégé Recommander ce document " class="statisticsLink btn btn-primary" href="/handle/10482/36547/statistics">



Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.