Skip navigation
Please use this identifier to cite or link to this item: https://repositorio.unb.br/handle/10482/33879
Files in This Item:
File Description SizeFormat 
EVENTO_ ImmuneInspiredOptimization.pdf268,6 kBAdobe PDFView/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFernandez, Stephanie A.-
dc.contributor.authorFantinato, Denis G.-
dc.contributor.authorMontalvão, Jugurta-
dc.contributor.authorAttux, Romis-
dc.contributor.authorSilva, Daniel Guerreiro e-
dc.date.accessioned2019-01-30T15:10:40Z-
dc.date.available2019-01-30T15:10:40Z-
dc.date.issued2018-
dc.identifier.citationFERNANDEZ, Stephanie A. et al. Immune-inspired optimization with autocorrentropy function for blind inversion of wiener systems. In: IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE - WCCI 2018, 2018, Rio Janeiro.pt_BR
dc.identifier.urihttp://repositorio.unb.br/handle/10482/33879-
dc.language.isoInglêspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleImmune-inspired optimization with autocorrentropy function for blind inversion of wiener systemspt_BR
dc.typeTrabalhopt_BR
dc.subject.keywordSistemas não-linearespt_BR
dc.subject.keywordFrameworkpt_BR
dc.rights.licenseAutorização concedida ao Repositório Institucional da Universidade de Brasília (RIUnB) pelo Prof. Daniel Guerreiro e Silva, em 29 de janeiro de 2019, para disponibilizar o trabalho, gratuitamente, para fins de leitura, impressão e/ou download, a título de divulgação da obra.pt_BR
dc.description.abstract1Blind inversion of nonlinear systems is a complex task that requires some sort of prior information about the source e.g. whether it is composed of independent samples or, particularly in this work, a dependence “signature” which is assumed to be known via the autocorrentropy function. Furthermore, it involves the solution of a nonlinear, multimodal optimization problem to determine the parameters of the inverse model. Thus, we propose a blind method for Wiener systems inversion, which is composed of a correntropy-based criterion in association to the well-known CLONALG immune-inspired optimization metaheuristic. The empirical results validate the methodology for continuous and discrete signals.pt_BR
Appears in Collections:ENE - Trabalhos apresentados em eventos

Show simple item record Recommend this item " class="statisticsLink btn btn-primary" href="/handle/10482/33879/statistics">



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.