
University of Brasília
Institute of Exact Sciences

Department of Statistics

Master’s Dissertation

A new invertible bimodal Weibull model

by

Beatriz Leal Simões e Silva

Brasília, November 2022



A new invertible bimodal Weibull model

by

Beatriz Leal Simões e Silva

A dissertation submitted to the Departament of

Statistics at the University of Brasília in par-

tial fulfilment of the requirements for the degree

Master in Statistics.

Supervisor: Prof. Dr. Cira Etheowalda Guevara

Otiniano

Co-supervisor: Prof. Dr. Eduardo Yoshio

Nakano

Brasília, November 2022



A dissertation submitted to the Departament of Statistics at the University of Brasília in partial

fulfilment of the requirements for the degree Master in Statistics.

Approved by:

Prof. Dr. Cira Etheowalda Guevara Otiniano

Supervisor, EST/UnB

Prof. Dr. Eduardo Yoshio Nakano

Cosupervisor, EST/UnB

Prof. Dr. Helton Saulo Bezerra dos Santos

EST/UnB

Prof. Dr. Marcelo Bourguignon Pereira

EST/UFRN

iii



All models are wrong, but some are useful.
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Resumo Expandido

UM NOVO MODELO WEIBULL BIMODAL INVERSÍVEL

A distribuição Weibull introduzida por Waloddi Weibull em 1951, é um dos modelos mais

utilizados em probabilidade e estatística, pois possui uma expressão simples para a função de

densidade de probabilidade (FDP), função de densidade acumulada (FDA), função de sobre-

vivência e momentos. No entanto, a distribuição Weibull não é capaz de ajustar dados bi-

modais. O livro de Rinne (2009) fornece uma descrição detalhada da distribuição Weibull de

três parâmetros, desde sua introdução até suas aplicações. Nas últimas duas décadas, muitas

generalizações e extensões da distribuição Weibull foram propostas a fim de fornecer maior

assimetria e bimodalidade na FDP, bem como flexibilizar a função de risco (HRF) para formas

não monotônicas, como banheira, unimodal, M ou N.

Para essas generalizações, algumas técnicas foram aplicadas a várias outras famílias de dis-

tribuições. Dentre essas técnicas, podemos citar a família de distribuição exponencial, família

de distribuição beta, família de distribuição beta modificada, família de distribuição de potência

generalizada. Algumas dessas distribuições são Weibull exponencializadas (Mudholkar and Sri-

vastava, 1993), beta-Weibull (Lee, Famoye, and Olumolade, 2007), modified Weibull (Zaindin

and Sarhan, 2009), power generalized Weibull (Kumar and Dey, 2017) , Exponentiated Power

Generalized Weibull (Pena-Ramirez et al., 2018). Todos esses modelos apresentam 3 ou mais
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parametros, são unimodais e possuem a distribuição Weibull como caso particular.

No contexto de populações heterogêneas com duas modas, as generalizações da distribuição

Weibull são recentes na literatura. Saboor et al., (2019) propuseram a distribuição modified beta

modified-Weibull com seis parâmetros. Uma desvantagem desse modelo é que sua FDA não pos-

sui uma forma fechada simples. Nota-se também que uma mistura de duas distribuições Weibull

é um modelo natural para capturar a bimodalidade (McLachlan and Peel, 2000), entretanto, as

propriedades e o procedimento para estimar seus parâmetros podem dificultar suas aplicações

Recentemente, Vila e Çankaya (2021) usaram uma técnica de transformação quadrática

para gerar uma distribuição Weibull bimodal. Este modelo é uma mistura de três distribuições

Weibull. A FDA é expressa em termos da função incompleta Gama. Ou seja, suas funções

FDA e quantil não possuem formas fechadas, que seriam muito úteis para procedimentos como

simulação e cálculos de medidas de risco.

Neste trabalho, propomos uma nova generalização da distribuição de Weibull. Dois modelos

são apresentados, Weibull Bimodal Invertível (IBW) e seu caso particular, Weibull Bimodal

Invertível Não Negativa (NNIBW). Em ambos os modelos, a FDP apresenta várias formas de

assimetria. A FDA tem uma expressão fechada simples e invertível, então sua função quantil

também possui uma fórmula fechada simples. Isso torna o modelo atrativo para ser usado em

procedimentos de simulação, regressão e cálculo de medidas de risco em diversas áreas. Por

exemplo, em finanças para o cálculo do Value at Risk (VaR), em hidrologia para o cálculo do

tempo de retorno (RT) e em confiabilidade para o cálculo da HRF. O HRF pode assumir formas

monótonas, unimodais, banheira ou em forma de N.

Na seção 1.2, é apresentada os modelos IBW e NNIBW, assim como seus cálculos e definições

importantes, suas funções densidade de probabilidade, além de materiais como momentos,

função quantil, estatísticas de ordem, sobrevivência e funções de risco.

Na seção 1.3, é detalhada a função de máxima verossimilhança para o modelo NNIBW, que

é utilizada para a estimação dos parâmetros do modelo, em seguida a performance do modelo

é testada e detalhada via simulações Monte Carlo para 14 conjuntos de valores dos parâmetros
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da distribuição. Utilizando o Erro Quadrático Médio (EQM), a distribuição apresentou bons

resultados para a simulação.

Finalmente, na seção 1.4, o modelo é utilizado para analisar 4 conjuntos de dados reais

referentes a temperatura ao longo de diferentes períodos. Para cada local, é feita uma transfor-

mação exponencial na variável da temperatura a fim de obter dados não negativos. Os modelos

NNIBW e BWeibull (Vila and Niyazi Çankaya, 2021) são ajustados para cada conjunto de

dados e graficamente nota-se um melhor ajuste bimodal da distribuição proposta. Também é

detalhada a série temporal de cada localidade, suas funções acumuladas empíricas e teóricas, os

quantis e por fim, as tabelas e gráficos de tempo de retorno das variáveis originais e ajustadas.

O modelo de regressão é ajustado para os dados da cidade de Yellowknife, utilizando as

estações do ano como covaráveis. O modelo permite explicar a relação e influência da variável

explicativa como evento de interesse, neste caso, as estações se mostraram tanto unimodais

quanto bimodais, suas modas são explicadas pela variação de temperatura nas estações de tran-

sição primavera e o outono. Os resultados mostraram um desempenho satisfatório do modelo

NNIBW para dados bimodais, sua função de forma fechada torna o modelo vantajoso para mais

estudos em dados desta natureza em trabalhos futuros.

Palavras-Chave: Distribuição Weibull, Weibull Bimodal, Dados heterogêneos, Tempo de

retorno
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Abstract

The Weibull distribution is one of the most used models in statistics and applied areas, as it has

a simple expression for the probability density function, survival function, and moments. How-

ever, the Weibull distribution is not able to fit bimodal data. In this work, we propose a new

generalization of the three-parameter Weibull distribution, a new invertible bimodal Weibull

model (NIBW), which can be bimodal and its cumulative distribution function and quantile

function have a simple and closed form, which makes it very interesting in simulation proce-

dures and for the calculation of risk measures in the applied areas. Several properties of the

model were studied and the non-negative version of the model (NNIBW) was used in the per-

formance of the maximum likelihood estimates of the parameters and tested using Monte Carlo

simulation. Furthermore, using four sets of temperature data, we fitted and compared our model

with another bimodal distribution, calculate the return time and fit as well a regression model

for one chosen dataset.

Keywords: Weibull distribution, Bimodal Weibull, Heterogeneous data, Return time
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Chapter 1

A new invertible bimodal Weibull model

1.1 Introduction

In probability and statistics, the Weibull distribution, introduced by Waloddi Weibull in 1951 is

one of the most popular continuous probability models. It is widely used in many fields such

as physics, biology, health, hydrology, and engineering, among others. Rinne’s Book (2009)

provides a detailed description of the three-parameter Weibull distribution, from its genesis to

its applications. Its applicability in the reliability area is limited due to the monotonic form of

its hazard rate function (HRF).

A continuous random variable Y has a Weibull distribution, Y ∼ Fβ,µ,λ, if its probability

density function (PDF) and cumulative distribution function (CDF) are given, respectively, by:

fβ,µ,λ(y) =


exp

{
−
[
y−µ
λ

]β} β
λ

[
y−µ
λ

]β−1
, y ≥ µ

0, y < µ

(1.1.1)
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cap. 1. A new invertible bimodal Weibull model §1.1. Introduction

and

Fβ,µ,λ(y) =


1− exp

{
−
[
y−µ
λ

]β}
, y ≥ µ

0, y < µ,

(1.1.2)

where β > 0 is shape parameter, λ > 0 scale parameter, and µ ∈ R location parameter.

In the last two decades, many generalizations and extensions of the Weibull distribution

have been proposed to provide greater asymmetry and bimodality in the PDF, as well as to flex

the HRF for non-monotonic shapes such as bathtub, unimodal, M, or N shape.

For these generalizations, some techniques were already applied to several other families of

distributions. Among these techniques, we can cite the exponentiated distribution family, beta

distribution family, modified beta distribution family, generalized power distribution family.

Some of these distributions are Weibull exponentialized (Mudholkar and Srivastava, 1993),

beta-Weibull (Lee, Famoye, and Olumolade, 2007), modified Weibull (Zaindin and Sarhan,

2009), power generalized Weibull (Kumar and Dey, 2017) , Exponentiated Power Generalized

Weibull (Pena-Ramirez et al., 2018). All these models have unimodal PDF. A good review of

some of these models was performed by Pham et al. (2007) .

In the context of heterogeneous populations with two modes, generalizations of the Weibull

distribution are recent. Saboor et al., (2019) proposed the modified beta modified-Weibull dis-

tribution with six parameters. A disadvantage of this model is that its CDF does not have a

simple closed-form, it is given in terms of the beta function. Furthermore, the moment and the

generating function are expressed in terms of special functions (Meijer function G) or series,

which makes its applicability difficult. For heterogeneous data, a mixture of two Weibull dis-

tributions is a natural model to capture bimodality (McLachlan and Peel, 2000), however, the

properties and the procedure for estimating its parameters can make its uneasy to apply. To

obtain a more flexible HRF model than the Weibull model, using extended Azzalini’s method

(Domma, Popović, and Nadarajah, 2015), Domma et al. (2017) proposed a model called "A new
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§1.1. Introduction

generalized weighted Weibull distribution" that has an HRF in the form decreasing, increasing,

upside-down bathtub, N-shape and M-shape. However, this model remains within the class of

finite mixture models, as it is a Weibull mixture model of five-component. Another model is

"A new generalized odd log-logistic flexible Weibull", recently proposed by Pratavieira, et al.

(2018), when considering the flexible Weibull as the G function inside generalized odd log-

logistic-G (GOLL-G) class. Similar results to this were obtained by Cordeiro et al. (2021) in

a LMOOLL-Weibull regression model, called "A new extended log-Weibull regression", based

on the log Marshall-Olkin odd log-logistic-G (LMOOLL-G) family. In both works, the PDF can

be unimodal or bimodal and the HRF can present unimodal and bathtub shapes. The mathemat-

ical properties of these models, such as moments, moment generating function, order statistics,

were not included. Recently, Vila and Çankaya (2021) used a quadratic transformation tech-

nique to generate a bimodal Weibull distribution. This model is a mixture of three Weibull

distributions. The CDF is expressed in terms of Gamma’s incomplete function. That is, its CDF

and quantile function does not have closed-forms, very useful to procedures like simulation and

calculating risk measures.

In this work, we propose a new generalization of the Weibull distribution. Two models are

presented, Invertible Bimodal Weibull (IBW) and it’s specific case, Non-Negative Invertible

Bimodal Weibull (NNIBW). The first model has either unimodal or bimodal PDF and in the

second only the bimodal PDF is shown. In both models, the PDF presents various forms of

asymmetry.

The CDF has a simple and invertible closed expression, so its quantile function also has a

simple closed formula. This makes our model attractive to be used in simulation procedures,

regression, and calculating risk measures in various areas. For example, in finance for the

calculation of Value at Risk (VaR), in hydrology for the calculation of the return time (RT), and

in reliability for the calculation of HRF. The HRF can take a monotonous, unimodal, bathtub,

or N-shaped forms.

Furthermore, this paper is divided in 4 sections. In section 1.2, the calculation for IBW and

3



cap. 1. A new invertible bimodal Weibull model §1.2. Main Results

NNIBW models are presented along with important materials like moments, quantile function,

order statistics, survival and hazard functions as well. In section 1.3, the estimation and simu-

lation for the NNIBW model is detailed, this step generates important results for the sequence

of the study. Finally, in section 1.4, the model is applied to 4 real datasets, and in one of them,

is applied the regression model concluding the study.

1.2 Main Results

1.2.1 Invertible bimodal Weibull distribution

Here we propose a new generalization of the Weibull distribution using a simple method in-

spired by the work of Swamee and Rathei (2007). In this paper they introduce bimodality in the

Normal and Log-normal distributions. This technique was also applied to generalize the logistic

distributions by Rathie and Coutinho (2011). Nojosa and Rathie (2017) applied for Marshall

Olkin distribution, and recently, Otiniano et al. (2021) applied to the generalized extreme value

(GEV) distribution.

Given a CDF Gθ of a random variable Y ; Y ∼ Gθ, the technique consists of composing Gθ

with the function Tδ,m, defined by

Tδ,m(x) = (x−m)|x−m|δ, m ∈ R, δ ∈ [0,+∞). (1.2.1)

Then G(Tδ,m) = Gθ,δ,m is the CDF of a new random variable X , more general than Y .

For Y ∼ Fβ,µ,λ, as (1.1.2), we define a random variableX , called invertible bimodal Weibull

(IBW); X ∼ Fβ,µ,λ,δ,m if

Fβ,µ,λ,m,δ(x) = Fβ,µ,λ(Tδ,m(x)), (1.2.2)

4



§1.2. Main Results

where

T ′δ,m(x) = (δ + 1)|x−m|δ. (1.2.3)

Since µ ∈ R, we have two cases:

Case µ ≥ 0. By denoting z = x−m, the CDF and PDF of X are given, respectively, by

fβ,µ,λ,m,δ(z) =


0, z < µ

1
δ+1

β(δ+1)
λ

exp

{
−
[
zδ+1−µ

λ

]β}[
zδ+1−µ

λ

]β−1
zδ, z ≥ µ

1
δ+1 ,

(1.2.4)

and

Fβ,µ,λ,m,δ(z) =


1− exp

{
−
[
zδ+1−µ

λ

]β}
, z ≥ µ

1
δ+1

0, z < µ
1
δ+1 .

(1.2.5)

Case µ < 0 ( Bimodal shapes). The CDF and PDF of X ∼ Fβ,µ,λ,δ,m are given, respectively, by

fβ,µ,λ,m,δ(z) =



0, z ≤ −(−µ)
1
δ+1

β(δ+1)
λ

exp

{
−
[
−(−z)δ+1−µ

λ

]β}[−(−z)δ+1−µ
λ

]β−1
(−z)δ, −(−µ)

1
δ+1 < z < 0

β(δ+1)
λ

exp

{
−
[
zδ+1−µ

λ

]β}[
zδ+1−µ

λ

]β−1
zδ, z ≥ 0,

(1.2.6)

and

5
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Fβ,µ,λ,m,δ =



0, z < −(−µ)
1
δ+1

1− exp

{
−
[
−(−z)δ+1−µ

λ

]β}
, −(−µ)

1
δ+1 ≤ z < 0

1− exp

{
−
[
zδ+1−µ

λ

]β}
, z ≥ 0.

(1.2.7)

Note that when δ = 0 the model X becomes the base model Y ; Fβ,µ,λ,0,m = Fβ,µ,λ. In

Figures 1.1 -1.5 we show the PDF (1.2.6) and CDF (1.2.7) varying the five parameters. In the

sub-figures of 1.1 and 1.2 (left), the PDF curves clearly show thatm and λ are location and scale

parameters, respectively. By the Figures 1.3-1.5, δ, β, and µ show to be shape parameters. The

new parameter δ makes the density bimodal for values greater than zero, Figure 1.3. The modes

get further apart as the value of δ grows. In the bimodal case, the β parameter influences in the

asymmetry of the density and the height of the modes, Figure 1.4. When µ ≥ 0 the density of

X is unimodal, while for µ < 0 the density is bimodal. For that reason, here we illustrate the

density curves for µ < 0. The sub-figures on the right show a CDF with variations of concave

and convex shapes and mixtures between them.

Figure 1.1: m variation in X ∼ F2,−1,2,2,m: PDF(left) and CDF (right).

6



§1.2. Main Results

Figure 1.2: λ variation in X ∼ F1,−1,λ,2,−1: PDF(left) and CDF (right).

Figure 1.3: δ variation in X ∼ F1,−1,2,δ,−1: PDF(left) and CDF (right).

Figure 1.4: β variation in X ∼ Fβ,−1,2,2,−1: PDF(left) and CDF (right).
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Figure 1.5: µ variation in X ∼ F1,µ,1,2,−1: PDF(left) and CDF (right).

Mode

The PDF of a random variable X ∼ Fβ,µ,λ,δ,m can be unimodal or bimodal.

Proposition 1.2.1. A real value xm is a mode point of fβ,µ,λ,m,δ if it is a solution to the equation

Tδ,m
′′(x) + (β − 1)(Tδ,m(x)− µ)−1 − β

λβ
(Tδ,m(x)− µ)β−1 = 0, (1.2.8)

where Tδ,m(x) is given in (1.2.1), T
′′

δ,m(x) = δ(δ + 1)sgn(x−m)|x−m|δ−1, and sgn(t) = t
|t| .

Proof. The proof proceeds directly by computing the critical points of the function (1.2.6) .

Moments

The moments of a random variable X are important descriptive measures of populations. To

calculate the moments of a random variable X ∼ Fβ,µ,λ,δ,0 here we use the gamma function,

upper incomplete gamma function, and lower incomplete gamma function, given, respectively,

by

Γ(a) =

∫ +∞

0

ta−1e−tdt, (1.2.9)

Γ(a;x) =

∫ x

0

ta−1e−tdt, (1.2.10)

8
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and

γ(a;x) =

∫ ∞
x

ta−1e−tdt. (1.2.11)

Proposition 1.2.2. Let X ∼ Fβ,µ,λ,δ,0 and r ∈ N. We have that if µ > 0, then

E(Xr(δ+1)) =
r∑

k=0

(
r

k

)
λr−kµk Γ

(
r − k
β

+ 1

)
(1.2.12)

and if µ ≤ 0, then

E(Xr(δ+1)) = (−1)r(δ+1)

r∑
k=0

(
r

k

)
(−µ)kλr−kΓ

(
r − k
β

+ 1;
(
−µ
λ

)β)

+
r∑

k=0

(
r

k

)
µkγ

(
r − k
β

+ 1;

(
−µ
λ

)β)
. (1.2.13)

Proof. By definition, for µ > 0, we have

E(Xr(δ+1)) =
∫ +∞

(µ)
1
δ+1

xr(δ+1) β(δ+1)
λ

exp

{
−
[
xδ+1−µ

λ

]β [
xδ+1−µ

λ

]β−1
xδdx (1.2.14)

and for µ ≤ 0

E
(
Xr(δ+1)

)
=

∫ 0

−(−µ)
1
δ+1

xr(δ+1)β(δ + 1)

λ
exp

{
−
[
−(−x)δ+1 − µ

λ

]β [−(−x)δ+1 − µ
λ

]β−1
(−x)δdx

+

∫ ∞
0

xr(δ+1)β(δ + 1)

λ
exp

{
−
[
xδ+1 − µ

λ

]β [
xδ+1 − µ

λ

]β−1
xδdx. (1.2.15)

For the positive integrals of (1.2.14) and (1.2.15) we use the substitution y =
[
xδ+1−µ

λ

]β
and for

the negative integral of (1.2.15) we use the substitution y =
[
−(−x)δ+1−µ

λ

]β
. Thus, with some

algebraic manipulations and application of Newton’s binomial formula, we update (1.2.14) and

9
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(1.2.15), respectively, by

E(Xr(δ+1)) =
r∑

k=0

(
r

k

)
λr−kµk

∫ +∞

0

y
r−k
β e−ydy (1.2.16)

and

E
(
xr(δ+1)

)
= (−1)r(δ+1)

r∑
k=0

(
r

k

)
(−µ)kλr−k

∫ (−µλ)
β

0

y
r−k
β e−ydy

+
r∑

k=0

(
r

k

)
µk
∫ ∞

(−µλ)
β
y
r − k
β

e−ydy. (1.2.17)

The proof is completed by expressing the integrals (1.2.16) and (1.2.17) in terms of the gamma

functions (1.2.9)-(1.2.11).

Quantile function

In hydrology and environmental data, the interest is the estimation of the probability of a given

process giving a value that exceeds a given level z in a future period. The T period (or return

time) of return level z is the expected waiting time until z is next exceeded. For independent

and identically distributed processes, return level and return periods correspond to quantiles and

exceedance probabilities, respectively.

If

P (X > zp) = 1− F (zp)

= p

and T = 1
p
, then the return level

zp = F−1
(

1− 1

T

)
(1.2.18)

10
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has return period p−1 = T .

For the random variable X ∼ Fβ,µ,λ,δ,m with µ < 0, the 1/p level zp is the 1− p quantile of

the invertible bimodal Weibull (IBW) distribution for 0 < p < 1.

zp =


[
µ+ λ[− ln(p)]

1
β

] 1
δ+1

+m, p ≤ exp
[
−
(
−µ
λ

)β]
−
[
−µ− λ[− ln(p)]

1
β

] 1
δ+1

+m, p > exp
[
−
(
−µ
λ

)β]
.

(1.2.19)

To calculate zp just consider the CDF (1.2.7) and the inverse function

T−1δ,m(t) =sgn(t)|t|
1
δ+1 + m

=


t

1
δ+1 +m, t ≥ 0

−(−t)
1
δ+1 +m, t < 0.

(1.2.20)

This function is also used to generate random samples ofX , using the inverse transformation

method.

Order Statistics

Given a random sample ofX of size N;X1, . . . , Xn independent and identically distributed (iid)

random variables. If re-ordering themX(1) < X(2) < ... < X(n) thenX(i) is called the i-th order

statistic. The smallest order statistic and the largest order statistic are X(1) = min{X1, . . . , Xn}

and X(n) = max{X1, ..., Xn}, respectively. The extreme value theory is based on the study

of the asymptotic distribution of X(1) and X(n), however the exact distribution of the i-th order

statistic can be useful in several applications (Seber and Lee, 2003).

Proposition 1.2.3. Let X ∼ Fβ,µ,λ,δ,m then the PDF of i-th order statistic of the sample

11
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X1, . . . , Xn is give by

f(i)(x) =
n!

(i− 1)!(n− i)!
β

λ
exp

[
−(n− i+ 1)

(
T (x)− µ

λ

)β](
T (x)− µ

λ

)β−1
∗

{
1− exp

[
−
(
T (x)− µ

λ

)β}
,

for x > T−1δ,m(µ), where Tδ,m and T−1δ,m are given in (1.2.1) and (1.2.20), respectively.

Proof. The proof follows directly from the function (1.2.2) and its derivative.

1.2.2 Non-negative invertible bimodal Weibull distribution

Here, the random variable X ∼ Fβ,µ,λ,δ,m of (1.2.7) is reparameterized by making m =

(−µ)
1
δ+1 , then the new random variable X ∼ FNNIBW(.;θ) is non-negative and θ = (β, µ, λ, δ)

is the vector of parameters. When considering v = x− (−µ)
1
δ+1 , the CDF FNNIBW is given by

FNNIBW(x;θ) =



0, v ≤ −(−µ)
1
δ+1

1− exp

{
−
[
−(−v)δ+1−µ

λ

]β}
, −(−µ)

1
δ+1 < v < 0

1− exp

{
−
[
vδ+1−µ

λ

]β}
, v ≥ 0,

(1.2.21)

Using the indicator function on the range A,

IA(x) =


1, if x ∈ A

0, if x ∈/A,

the corresponding PDF is written as

fNNIBW(x;θ) = f1(x;θ)I(x)
[0,(−µ)

1
δ+1 ]

+ f2(x;θ)I(x)
[(−µ)

1
δ+1 ,+∞]

(1.2.22)
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Figure 1.6: PDF of X ∼ FNNIBW(.; β,−2, 2, 2) (left) and PDF of X ∼
FNNIBW(.; 2, µ, 1, 2)(right).

Figure 1.7: PDF of X ∼ FNNIBW(.; 2,−2, λ, 2) (left) and PDF of X ∼
FNNIBW(.; 2,−2, 2, δ)(right)

where

f1(x;θ) =
β(δ + 1)

λ
exp

{
−
[
−(−v)δ+1 − µ

λ

]β}[−(−v)δ+1 − µ
λ

]β−1
(−v)δ (1.2.23)

and

f2(x;θ) =
β(δ + 1)

λ
exp

{
−
[
vδ+1 − µ

λ

]β}[
vδ+1 − µ

λ

]β−1
vδ. (1.2.24)

The different formats of the PDF of X ∼ FNNIBW(.;θ) are shown in Figures 1.9 and 1.7. In

this case, the λ parameter is also a shape parameter.

The survival function and the HRF are very useful functions in reliability applications.

13
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These functions, for X ∼ FNNIBW(.;θ), are given, respectively, by

SNNIBW(x;θ) =



1, v < −(−µ)
1
δ+1

exp

{
−
[
−(−v)δ+1−µ

λ

]β}
, −(−µ)

1
δ+1 ≤ v < 0

exp

{
−
[
vδ+1−µ

λ

]β}
, v ≥ 0

(1.2.25)

and

hNNIBW(x;θ) =


0, v < −(−µ)

1
δ+1

β(δ+1)
λ

[
−(−v)δ+1−µ

λ

]β−1
(−v)δ, −(−µ)

1
δ+1 ≤ v < 0

β(δ+1)
λ

[
vδ+1−µ

λ

]β−1
vδ, v ≥ 0

(1.2.26)

Figure 1.8 shows the well-known HRF of X ∼ FNNIBW(.; β, µ, λ, 0) = Fβ,λ,µ (three-

parameter Weibull ( 1.1.2)). Figure 1.9 shows a more flexible HRF ofX ∼ FNNIBW(.; β, µ, λ, δ).

It depends on the variations of the parameters β, µ, λ, and δ.

Figure 1.8: HRF curve of X ∼ FNNIBW(.; β, µ, λ, δ) for δ = 0 and varying β.

14
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Figure 1.9: HRF curve of X ∼ FNNIBW(.; β, µ, λ, δ) for the legend parameters.

1.3 Estimation and Simulation

1.3.1 Maximum likelihood estimation

We consider maximum likelihood estimates (MLE) of the unknown parameters θ = (β, µ, λ, δ)

that appear in the NNIBW model with PDF (1.2.22). Supposing that (x1, x2, . . . , xn) are the

values of a random sample of X ∼ FNNIBW(.;θ), then the corresponding log-likelihood func-

tion is

l(θ | x) =
n∑
i=1

log[fNNIBW(xi;θ)]

= l1(θ | x) + l2(θ | x). (1.3.1)

15
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Without loss of generality, assume that the sample is given by (x1, . . . , xk, xk+1, . . . , xn), in

which xi < (−µ)
1
δ+1 for i = 1, . . . , k and xi ≥ (−µ)

1
δ+1 for i = k + 1, . . . , n, then the

expressions of l1(θ | x) and l2(θ | x) of (1.3.1) are given by

l1(θ | x) =
k∑
i=1

log

[
f1(xi;θ)I(

0,(−µ)
1
δ+1

)(xi)

]
and (1.3.2)

l2(θ | x) =
n∑

i=k+1

log

[
f2(xi;θ)I[

(−µ)
1
δ+1 ,+∞

)(xi)

]
,

where, using the notation vi = xi − (−µ)
1

1+δ , one has that

log f1(xi;θ) = log(β) + log(δ + 1)− log(λ)−
[
−(−vi)δ+1 − µ

λ

]β
+(β − 1) log

[
−(−vi)δ+1 − µ

λ

]
+ δ log(−vi)

and

log f2(xi;θ) = log(β) + log(δ + 1)− log(λ)−
[
vδ+1
i − µ
λ

]β
+ (β − 1) log

[
vδ+1
i − µ
λ

]
+ δ log vi.

(1.3.3)

By combining the functions (1.3.2)-(1.3.3) into (1.3.1), the log-likelihood function results in

16
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l(θ | x) = n log(β) + n log(δ + 1)− n log(λ)

−
k∑
i=1

(Ψ1
i )
β + (β − 1)

k∑
i=1

log Ψ1
i + δ

k∑
i=1

log (−vi)

−
n∑

i=k+1

(Ψ2
i )
β + (β − 1)

n∑
i=k+1

log Ψ2
i + δ

n∑
i=k+1

log (vi) (1.3.4)

where Ψ1
i = −(−vi)δ+1−µ

λ
and Ψ2

i =
vδ+1
i −µ
λ

. As

∂

∂µ
Ψ1
i =

1

λ

[
(−vi)δ (−µ)−

1
δ+1 − 1

]
,

∂

∂µ
Ψ2
i =

1

λ

[
(vi)

δ (−µ)−
δ
δ+1 − 1

]
∂

∂λ
Ψ1
i = −1

λ
Ψ1
i ,

∂

∂λ
Ψ2
i = −1

λ
Ψ2
i

∂

∂δ
Ψ1
i = −1

λ

[
(−vi)δ+1 log (−vi) + (δ + 1)−1 (−vi)δ (−µ)

1
δ+1 log(−µ)

]
,

∂

∂δ
Ψ2
i =

1

λ

[
(vi)

δ+1 log (vi) + (δ + 1)−1 (vi)
δ (−µ)

1
δ+1 log(−µ)

]

Then, the maximum likelihood estimates of λ, β, µ, and δ are solutions of the following

system of equations

∂l(θ | x)

∂λ
=
−nβ
λ

+
β

λ

k∑
i=1

(Ψ1
i )
β +

β

λ

n∑
i=k+1

(Ψ2
i )
β = 0; (1.3.5)
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∂l(θ | x)

∂β
=
n

β
−

k∑
i=1

(Ψ1
i )
β log(Ψ1

i ) +
k∑
i=1

log(Ψ1
i ) (1.3.6)

−
n∑

i=k+1

(Ψ2
i )
β log(Ψ2

i ) +
n∑

i=k+1

log(Ψ2
i ) = 0;

∂`(θ|x)

∂µ
= −β

λ

k∑
i=1

(Ψ1
i )
β−1
[
(−µ)−

δ
δ+1 (−vi)δ − 1

]
+

(β − 1)

λ

k∑
i=1

(Ψ1
i )
−1
[
(−µ)−

δ
δ+1 (−vi)δ − 1

]
− β

λ

n∑
i=k+1

(Ψ2
i )
β−1
[
(−µ)−

δ
δ+1vδi − 1

]
+

(β − 1)

λ

n∑
i=k+1

(Ψ2
i )
−1
[
(−µ)−

δ
δ+1vδi − 1

]
− δ

δ + 1
(−µ)−

δ
1+δ

n∑
i=k+1

(−vi)−1 +
δ

δ + 1
(−µ)−

δ
1+δ

n∑
i=k+1

(vi)
−1 = 0; (1.3.7)

∂l(θ|x)

∂δ
=

k∑
i=1

(β
λ

(Ψ1
i )
β−1 − (β − 1)

λ
(Ψ1

i )
−1
) [

(−vi)δ+1 log (−vi) + (δ + 1)−1 (−vi)δ (−µ)
1
δ+1 log(−µ)

]
− β

λ

n∑
i=k+1

(β
λ

(Ψ2
i )
β−1 − (β − 1)

λ
(Ψ2

i )
−1
) [

(vi)
δ+1 log (vi) + (δ + 1)−1 (vi)

δ (−µ)
1
δ+1 log(−µ)

]
+

n

δ + 1
− δ

(δ + 1)2
(−µ)

δ
δ+1 log(−µ)

k∑
i=1

v−1i

+
δ

(δ + 1)2
(−µ)

1
δ+1 log(−µ)

n∑
i=k+1

v−1i = 0. (1.3.8)

1.3.2 MLE performance via simulation

As the initial idea was to apply data to the survival model, the NNIBW function was used for the

simulation and for the applications. To test the performance of maximum likelihood estimation

of λ, β, µ, and δ, via Monte Carlo simulation, here we proceed as follows: First, we draw

fourteen vectors of parameters θ of X ∼ FNNIBW(.;θ), then we simulate samples of various
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sizes for each X ∼ FNNIBW(.;θ`), ` = 1, . . . , 14. Finally, after maximizing the function

(1.3.4), we obtain the mean estimates and their mean squared error (MSE). The fourteen vectors

of the θ` are the combination of the following values: β = 1, 2, λ = 1, 2, δ = 0.5, 1 and

µ = −1,−2. The parameters set are detailed in the third column of Tables 1.1 and 1.2.

The procedures for simulating X and calculating maximum likelihood estimates were im-

plemented in the Project for Statistical Computing, R-4.0.5 for Windows. The quantile function,

determined in section 1.2, was essential to apply the inverse transformation method to generate

the random samples of X , because for a random sample p ∼ U(0, 1) just apply (1.2.19). So,

we use the following procedure:

(i) Generate M=1000 random samples from X ∼ FNNWBI(.;θ), θ = (β, δ, µ, λ), using (1.2.19

), of size N = 50, 100, 500.

(ii) Optimizing (1.3.4) with "optim" library in R, then calculate the mean estimate θ̂ = 1
M

∑M
i=1 θ̂i

and the MSE(θ̂) = 1
M

∑M
i=1(θ̂i − θ)2.

(iii) For the initial value, consider the actual parameter value plus a random value from the

random variable U(0, 1).

The results of the mean estimate of θ and MSE(θ̂) are in Tables 1.1 and 1.2. Note that as

the sample size grows (N=50 to 500), the MSE value decreases. This explains the convergence

of the estimator θ̂ to θ.

The good performance of the maximum likelihood estimator θ̂ is also illustrated in the

Appendix A, Figures 24-30. In these figures, we compare the fitted values from a sample of

sizes 50 and 500 with the theoretical density adjusted to the values of parameters in Tables 1.1

and 1.2. In these figures, it can be observed that the values are close to the real density, and as

the size of sample increase, the fitted values get even closer. This is an indication of the good

performance of the obtained maximum likelihood estimates.
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Table 1.1: Mean estimates and its MSE for θ1 to θ7

θ N50 N100 N500 EQM50 EQM100 EQM500

θ1

β 1 1.046 1.019 1.003 0.019 0.007 0.001
λ 1 1.031 1.018 1.002 0.03 0.014 0.003
δ 0.5 0.604 0.551 0.509 0.065 0.025 0.005
µ -1 -1.058 -1.026 -1.004 0.045 0.013 0.001

θ2

β 2 2.156 2.074 2.016 0.134 0.046 0.007
λ 1 1.013 1.01 1.002 0.007 0.003 0.001
δ 0.5 0.6 0.543 0.509 0.057 0.023 0.004
µ -1 -1.022 -1.016 -1.002 0.012 0.005 0

θ3

β 1 1.029 1.015 1.003 0.018 0.008 0.001
λ 2 2.075 2.032 2.003 0.126 0.056 0.01
δ 0.5 0.562 0.53 0.506 0.046 0.021 0.003
µ -1 -1.051 -1.023 -1.005 0.051 0.015 0.001

θ4

β 2 2.078 2.021 2.002 0.094 0.035 0.007
λ 2 2.023 2.007 2.003 0.028 0.014 0.002
δ 0.5 0.548 0.529 0.507 0.043 0.018 0.003
µ -1 -1.018 -1.01 -1.002 0.021 0.007 0.001

θ5

β 1 1.05 1.022 1.005 0.02 0.008 0.001
λ 1 1.024 1.018 1.001 0.03 0.014 0.003
δ 1 1.122 1.067 1.01 0.109 0.048 0.008
µ -1 -1.031 -1.017 -1.003 0.028 0.012 0.001

θ6

β 2 2.154 2.058 2.008 0.153 0.049 0.007
λ 1 1.007 1.004 1 0.009 0.004 0.001
δ 1 1.113 1.05 1.007 0.098 0.042 0.007
µ -1 -1.012 -1.004 -1.002 0.01 0.004 0.001

θ7

β 1 1.031 1.012 0.999 0.021 0.008 0.001
λ 2 2.079 2.035 2.009 0.151 0.058 0.011
δ 1 1.093 1.04 1.012 0.08 0.034 0.006
µ -1 -1.037 -1.007 -1.002 0.035 0.011 0.002
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Table 1.2: Mean estimates and its MSE for θ7 to θ14

θ N50 N100 N500 EQM50 EQM100 EQM500

θ8

β 2 2.059 2.039 2.004 0.102 0.042 0.007
λ 2 2.018 2.009 2.003 0.031 0.013 0.002
δ 1 1.064 1.021 1.009 0.07 0.029 0.006
µ -1 -1.007 -1.008 -1.001 0.02 0.008 0.001

θ9

β 1 1.072 1.028 1.005 0.027 0.011 0.002
λ 1 1.173 1.074 1.009 0.165 0.061 0.008
δ 0.5 0.663 0.573 0.509 0.139 0.058 0.008
µ -2 -2.26 -2.132 -2.015 0.459 0.15 0.012

θ10

β 1 1.043 1.02 1.004 0.019 0.007 0.001
λ 2 2.183 2.074 2.02 0.272 0.092 0.018
δ 0.5 0.606 0.543 0.511 0.065 0.025 0.004
µ -2 -2.19 -2.074 -2.022 0.252 0.064 0.008

θ11

β 2 2.156 2.075 2.013 0.148 0.053 0.007
λ 2 2.131 2.056 2.008 0.12 0.041 0.007
δ 0.5 0.596 0.546 0.505 0.056 0.023 0.004
µ -2 -2.138 -2.059 -2.008 0.132 0.035 0.005

θ12

β 1 1.065 1.027 1.006 0.03 0.011 0.002
λ 1 1.171 1.063 1.012 0.229 0.061 0.008
δ 1 1.192 1.076 1.019 0.264 0.095 0.015
µ -2 -2.26 -2.101 -2.017 0.564 0.138 0.015

θ13

β 1 1.041 1.019 1.005 0.019 0.008 0.001
λ 2 2.181 2.076 2.014 0.27 0.111 0.018
δ 1 1.109 1.057 1.01 0.105 0.044 0.008
µ -2 -2.159 -2.077 -2.016 0.232 0.079 0.01

θ14

β 2 2.149 2.072 2.01 0.147 0.058 0.008
λ 2 2.117 2.06 2.007 0.114 0.053 0.008
δ 1 1.117 1.055 1.007 0.099 0.048 0.007
µ -2 -2.12 -2.058 -2.008 0.121 0.052 0.006
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1.4 Applications

The four temperature data sets used in the application of our model correspond to the localities

of Svalbard Islands(NO), Delhi(IN), Dawson City (CA), and Yellowknife (CA).

Svalbard is a Norwegian archipelago. The geographical location is illustrated in Figure 1.10,

the archipelago has an arctic climate and the average temperature varies between 4 °C and 7 °C

in summer (from June to September) and -13 °C and -9 °C in winter (from December to March).

The data is freely available on kaggle plataform (Svalbard Climate, 1910-2017 2022), it consists

of the monthly average temperature for the years 1912 to 2017 from January to December, that

is 1720 observations for the temperature.

Figure 1.10: Geographical location of Svalbard Island as https://www.bing.com/images.

Delhi is located in northern India, see, Figure 1.11. Delhi’s climate is humid subtropical,

where summer are usually long and hot and winter are mild and short. The average annual

temperature is of 25 °C . In summer, the temperature varies between 29 °C and 33 °C (from

April to July), while in winter, the temperature varies between 14 °C and 17 °C (from August to

March). The data was also obtained in kaggle plataform (Daily Climate time series data 2022)

and it consists of the average daily temperature of 2017 in the period from January 1st to April

24th, that is 114 observations.
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Figure 1.11: Geographical location of Delhi as https://www.bing.com/images.

Dawson City and Yellowknife are sub-Arctic Canadian cities, Figure 1.12, with positive

average temperatures from June to September and negatives from December to March. The

data for Dawson City corresponds to the maximum of daily temperature in the year of 2021,

that is a little less than 365 observations, due to some missing data. On the other hand, for

the Yellowknife, Initially, the minimum daily temperatures from January 1953 to August 2022

were considered. To decrease the temporal dependence of the data, we used the technique of

minimum blocks of size 90 and obtained a sub-sample of 281 data. Both datasets were obtained

at the official website for climate data from Canada’s government (Climate Weather 2022).

Figure 1.12: Geographical location of Dawson City and Yellowknife as
https://www.bing.com/images.
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The Yellowknife dataset was chosen to apply the regression model, which will be seen in

subsection 1.4.1. We use the Ljung-Box’s test (Trapletti, 2016) to choose the block size N such

that the minimum sub-sample of these blocks are independent. For the Yellowknife data, the

test does not reject the null hypothesis of independence for N >= 20. For this reason, and to

capture the minimum of each year’s season, we consider N = 90.

Table 1.3: Descriptive measures for datas

Data Mean Min C° 1st Qua Median 3st Qua Max C°
Svalbard -4.39 -21.80 -9.40 -4.80 1.60 9.70
Dawson City 0.54 -44.90 -15.10 3.40 17.70 29.10
Yellowknife -27.42 -48.90 -41.70 -34.40 -9.70 5.20
Delhi 21.71 11.00 16.44 19.88 27.71 34.50

In table 1.3, the descriptive measures for data is detailed. As expected, as the dataset corre-

sponds to minimum temperature, the city of Yellowknife has the lowest minimum temperature

and mean of all datasets. Delhi, being the only city that is in south hemisphere, has the highest

maximum temperature and mean of all.

Figure 1.13: Original temperature data

In Figure 1.13 are the histograms of the four data sets corresponding to the original data.
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When considering the population of the data as a random variable X , whose density presents

a bimodal behavior with positive and negative values, we transform these data into non-negative

using the function Y = exp(X/100) for Dawson City, Yellowknife and Delhi and Y = exp(X/10)

for Svalbard. Following that, we fit the transformed data in NNIBW model, FNNIBW (.; β, δ, µ, λ),

and in the BWeibull model FBWeibull(.;α, β, δ), (Vila and Niyazi Çankaya, 2021).

To fit the Y data, the maximum likelihood procedure was used to estimate the parameters.

In R Project for Statistical Computing, version 4.0.5 we estimate the parameters by optimizing

the log-likelihood function of each model through the optim function. As the optimization

procedure requires the input of initial values, a range of values for each parameter were created

based on the values seen in Figures 1.6 and 1.7. Then this range was used to define a grid of

length 1000 of different initial values for optimization.

The estimates result of the parameters for the four data sets and the results of the goodness-

of-fit test based on the Akaike Information Criterion (AIC) are shown in Table 1.4. This table

shows that the NNIBW model is the most suitable, judging the AICs. Figure 1.14 also shows

that the NNIBW model fits these bimodal data better than the BWeibull model.

Table 1.4: Estimates and AIC for each model

Data BWeibull NNIBW
α̂ β̂ δ̂ β̂ λ̂ δ̂ µ̂

Svalbard 1.858352 0.890644 1.105322 2.0982 1.0225 0.5414 -1.1030
AIC 2082.366 1893.531

Yellowknife 4.7991 0.760 -0.00023 84.26952 0.66067 1.6551 -0.6626
AIC -295.8803 -510.1072

Dawson City 7.010053 1.106196 0.780132 19.5989 1.1025 0.6753 -1.0883
AIC -218.1242 -319.274

Delhi 14.51825 1.267309 3.61872 205.6770 1.6910 1.0227 -1.6929
AIC -227.9446 -281.8058

Comparing the models results shown in table 1.4, the NNIBW model gives a better value
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for the AIC than the BWeibull model.The µ̂ being negative for the four datasets were expected,

since it gives the bimodality shown on the Figure 1.14, but β̂ appears to be overestimated. The

BWeibull model was unable to show the bimodality on the datasets, one of the reasons can be

that, on the paper, this function has shown bimodality only on larger scale data and the model

probably has difficulties to be fitted to a smaller range of X ( Vila and Niyazi Çankaya, 2021).

Figure 1.14: NNIBW and BWeibull densities fitted to the transformed data.

The good fit of the data by the NNIBW model is also shown in Figures 1.15-1.18, since the

theoretical functions of the CDF and Quantile of the NNIBW model are close to their respective

empirical functions.
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Figure 1.15: Delhi: Historical series, fitted density, CDF, and quantile function.

Figure 1.16: Svalbard: Historical series, fitted density, CDF, and quantile function.
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Figure 1.17: Dawson City: Historical series, fitted density, CDF, and quantile function.

Figure 1.18: Yellowknife: Historical series, fitted density, CDF, and quantile function.

The temperature is an event that can be associated with a return time. This statistical func-

tion is very useful for risk analysis in climatology, generally to minimize the harmful effects

of temperature. From the equations 1.2.18 and 1.2.19, it can be seen that for an NNIBW pop-

ulation the return level has a closed formula. Based on the quantile function 1.2.19, here the
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return level and return time of Y were calculated, and then, by the transformation 100 ln(Y ), the

return level and return time of the original data X were obtained. Figures 1.19 to 1.22 illustrate

the return level and return time for the four data sets. In the left panels is the return time of the

transformed data and in the right panels is the return time of the original data.

Figure 1.19: Return time of Dawson City: original data (right panel) and transformed data (left
panel).

Figure 1.20: Return time of YellowKnife: original data (right panel) and transformed data (left
panel).

Figure 1.21: Return time of Svalbard: original data (right panel) and transformed data (left
panel).
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Figure 1.22: Return time of Delhi: original data (right panel) and transformed data (left panel).

The real applicability of our model in risk analysis is through the return time. To make this

clearer, in Table 1.5, we show seven particular values of the return time and their corresponding

return level for Dawson City, Yellowknife, Svalbard, and Delhi.

Table 1.5: Some return time and return level values.

p Return time Return Level °C

Dawson City

0.375 1.6 -6.73
0.5 2 0.35
0.9 10 21.69

0.95 20 23.85
0.99 100 27.01

0.999 1000 29.68

Yellowknife

0.375 1.6 -36.40
0.5 2 -32.61
0.9 10 -1.23

0.95 20 0.77
0.99 100 3.28

0.999 1000 5.16

Svalbard

0.375 1.6 -6.47
0.5 2 -4.08
0.9 10 4.91

0.95 20 5.88
0.99 100 7.30

0.999 1000 8.53

Delhi

0.375 1.6 18.62
0.5 2 20.29
0.9 10 31.45

0.95 20 32.50
0.99 100 33.88
0.999 1000 34.97
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In table 1.5, the interpretation is different for each city. As instance for Dawson City, the

return time is given as days for the maximum temperature, on the mean, it takes 100 days to

overcome 27.01 °C. For Svalbard, as the data is the monthly average, 100 months are expected

to experience at least once the mean temperature of 3.28 °C . For Yellowknife, as the data are

the minimum value of 90 days, the return time must be interpreted as sets of this length, so,

9000 days are expected to overcome a minimum temperature of 3.28 ºC.

1.4.1 Regression model

A NNIBW regression model can be obtained by incorporating the regressor variables into the

NNIBW distribution through the parameter λ. Thus, considering the log-link function, the

NNIBW regression model is given by expression (1.2.22) with

λ = exp{Z ′γ}, (1.4.1)

where Z = (1, Z1, . . . , Zk) is the vector of k explanatory variables with their respective regres-

sion coefficients given by γ = (γ0, γ1, . . . , γk).

A regression model allows explaining the relationship between the explanatory variables in

the event of interest. To investigate the influence of seasons on the Yellowknife temperature,

here we consider a NNIBW regression model in the λ parameter. Since the data corresponds

to the period of quarters of year, each observation can be classified according to four seasons

(Summer, Winter, Autumn or Spring). In this example, the four seasons were considered as

an explanatory variable associated to temperature. Since it has four categorical levels, three

dummies variables were defined: Z1, Z2 and Z3, where Z1 = 1 if it is Winter and Z1 = 0

otherwise; Z2 = 1 if it is Autumn and Z2 = 0 otherwise; Z3 = 1 if it is Spring and Z3 = 0

otherwise. Here, the Summer was considered as the reference category (represented as Z1 =
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Z2 = Z3 = 0). Thus the NNIBW regression model is given by expression (1.21) with

λ = exp{γ0 + γ1Z1 + γ2Z2 + γ3Z3}. (1.4.2)

In (1.4.2) γ0 is the regression coefficient associated to Summer and γ1, γ2 and γ3, are the re-

gression coefficients associated to Winter, Autumn and Spring, respectively. The estimates of

the parameters of the NNIBW regression model were calculated by optimizing the likelihood

function (2.5) using the optimal function of the R program. Table 1.6 presents the results of

parameter estimates from the NNIBW regression model for the Yellowknife City dataset.

Table 1.6: Parameters estimates for the regression model

parameter estimate
γ0 0.317
γ1 -0.088
γ2 -0.013
γ3 -0.060
β 49.135
δ 0.932
µ -0.691

These results is being interpreted as follows: The greater the value of γ the greater the value

of the temperature associated with the corresponding season. Thus, our results are coherent with

reality, since the coefficient γ1 associated with Winter is the lowest value and the coefficient

corresponding to Summer, γ0, is the highest value. The Autumn and Spring coefficients, γ2 and

γ3, respectively, are intermediate. The illustration of our regression model is shown in Figure

1.23. It can be seen that the data for all seasons were well-adjusted by the NNIBW model and

Winter and Summer seasons were well-defined by an unimodal density, while the Autumn and

Spring seasons are diversified and explained by bimodal densities.
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Figure 1.23: Fitted regression model for Yellowknife data

1.4.2 Concluding Remarks

In this paper, a new generalization of the Weibull distribution were proposed with two resulted

distributions: the Invertible Bimodal Weibull and the Non-negative invertible Bimodal Weibull.

The NNIBW has shown different formats and flexibility on PDF, CDF and HRF functions.

The estimation of the parameters and the simulation of the distribution were uncomplicated

to accomplish, due to the model’s closed form. The application of the model in the chosen

datasets were satisfied, which shows that this model can be applied to studies about weather and

temperature. Overall, the results were satisfactory, and the regression model allowed explaining

the relationship between the variables. As future work we can point out the study of the NNIBW

model in the context of dependent data.
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Appendix A

Figure 24: Theoretical density versus adjusted density: fNNWBI(x; θi) i = 1 (left) and 2
(right).

Figure 25: Theoretical density versus adjusted density: fNNWBI(x; θi) i = 3 (left) and 4
(right).
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Figure 26: Theoretical density versus adjusted density: fNNWBI(x; θi) i = 5 (left) and 6
(right).

Figure 27: Theoretical density versus adjusted density: fNNWBI(x; θi) i = 7 (left) and 8
(right).

Figure 28: Theoretical density versus adjusted density: fNNWBI(x; θi) i = 9 (left) and 10
(right).
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Figure 29: Theoretical density versus adjusted density: fNNWBI(x; θi) i = 11 (left) and 12
(right).

Figure 30: Theoretical density versus adjusted density: fNNWBI(x; θi) i = 13 (left) and 14
(right).
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