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Abstract

There is growing evidence from both behavioral and neurophysiological

approaches that primates are able to rapidly discriminate visually between snakes

and innocuous stimuli. Recent behavioral evidence suggests that primates are also

able to discriminate the level of threat posed by snakes, by responding more

intensely to a snake model poised to strike than to snake models in coiled or

sinusoidal postures (Etting and Isbell 2014). In the present study, we examine the

potential for an underlying neurological basis for this ability. Previous research

indicated that the pulvinar is highly sensitive to snake images. We thus recorded

pulvinar neurons in Japanese macaques (Macaca fuscata) while they viewed

photos of snakes in striking and non-striking postures in a delayed non-matching to

sample (DNMS) task. Of 821 neurons recorded, 78 visually responsive neurons

were tested with the all snake images. We found that pulvinar neurons in the medial

and dorsolateral pulvinar responded more strongly to snakes in threat displays

poised to strike than snakes in non-threat-displaying postures with no significant

difference in response latencies. A multidimensional scaling analysis of the 78

visually responsive neurons indicated that threat-displaying and non-threat-

displaying snakes were separated into two different clusters in the first epoch of 50

ms after stimulus onset, suggesting bottom-up visual information processing.

These results indicate that pulvinar neurons in primates discriminate between

poised to strike from those in non-threat-displaying postures. This neuronal ability

likely facilitates behavioral discrimination and has clear adaptive value. Our results

are thus consistent with the Snake Detection Theory, which posits that snakes were

instrumental in the evolution of primate visual systems.
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Introduction

Biologically threatening stimuli are known to elicit fast and vigorous reactions

from most animals, including freezing, darting, rapid retreat, alarm calls, and

defensive attacks. Such responses were likely selected for over evolutionary time

because animals that behaved in ways that helped them avoid threatening stimuli

would have survived longer than those that did not. Before these reactions occur,

however, the threatening stimuli must be detected, and this can be achieved

through one or more of the senses. Rodents for example, can detect the scents of

snakes and other predators and avoid areas where those predators have recently

been [1, 2]. In the case of primates, the olfactory sense has been reduced over

evolutionary time with concomitant expansion of the visual sense. It has been

argued that predation pressure from snakes constituted a strong source of

selection that directly favored expansion of the visual system of primates at the

expense of the olfactory system [3, 4]. Snakes that had gapes large enough to eat

mammals evolved shortly before the primate lineage evolved, and venomous

snakes have been a threat to anthropoid primates since their divergence from

prosimians approximately 60 million years [4]. Primate visual systems are well-

suited for clearly seeing objects in the lower visual field within peripersonal space,

where the risk from snakes is usually greatest [4, 5].

Wild primates and both fatal and snake-naïve laboratory-reared primates

exhibit strong behavioral responses toward snakes [6–10]. Recently, both human

and non-human primates have also been found to exhibit strong visual responses

toward snakes. In humans, adults, children, and even infants are able to visually

detect images of snakes faster than nonthreatening targets both in color and gray-

scale images [11–15]. Japanese macaques (Macaca fuscata) respond in a similar

manner [16]. Snake images also receive attentional priority compared to other

stimuli. They draw attention away from neutral targets (i.e., a bird) when their

images are included against a background of other neutral objects, especially

under high perceptual load, i.e., under conditions that simulate the cluttered

natural environments in which snakes are often found [17].

A specific neuronal circuit for innate visual recognition of threatening stimuli such as

snakes has been proposed that includes a fast, automatic, subcortical pathway involving

the superior colliculus and the pulvinar nucleus in the thalamus [3, 4, 18–20]. Several

behavioral and neurophysiological studies support this model. For instance, monkeys

with bilateral neurotoxic lesions of the superior colliculus readily approached food

located in a center of a coiled snake model, while monkeys with sham lesions avoided

the food [21]. In humans, complete unilateral loss of the pulvinar induced deficits of

recognition of emotional expressions while a sparing of the medial and posterior

pulvinar did not [22]. When people were shown images of fear faces so quickly that they

were not consciously aware of them, both the superior colliculus and pulvinar were

activated [23].

In a study to investigate the neuronal basis of the ability of primates to visually

detect snakes quickly and automatically, Le et al. [24] found neurons in the medial

and dorsolateral pulvinar of Japanese macaques that responded more strongly and
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quickly to snake images than to images of faces and hands of macaques, and to

simple geometric shapes. Interestingly, the response characteristics of these

pulvinar neurons were well correlated with those in the superior colliculus except

that response latencies were shorter in the superior colliculus [25, 26] as might be

expected if the visual route for detecting threatening stimuli goes first to the

superior colliculus and then to the pulvinar (see above).

Recently, there has been interest in identifying the specific cues provided by

snakes that enable primates to visually detect them so rapidly. Snakes have a

number of qualities shared by no other animals, including an elongated, limbless,

scaled body that can change shape depending at times on the degree of their intent

to strike and thus, on the degree of threat. LoBue and DeLoache [27] found that

humans were unable to detect coiled snakes more quickly than other coiled

objects. Moreover, elongated snakes were not detected more quickly than flowers.

They suggested that the unique ability of snakes to coil upon themselves is the

critical stimulus for rapid detection. Unfortunately, they did not control for the

level of threat. A study of rhesus macaques (M. mulatta) found that a sinusoidal

snake model (most similar to an elongated snake) elicited weaker responses than a

coiled snake model, as would be expected if a coiled shape is the critical cue.

However, a snake model that was partially exposed and revealing only a slight

curve elicited stronger responses than a coiled snake model, suggesting that

posture per se is less important than the information that can be gleaned from it.

A snake poised to strike reveals a greater or more immediate threat than a coiled,

sinusoidal, or elongated snake, and indeed, a snake model poised to strike in a

threat posture elicited the strongest responses from the monkeys [28]. Children

with no experience with snakes also visually detected photos of snakes in threat

posture faster than those of snakes not poised to strike [29]. These findings

suggest that primates are sensitive to variation in the level of threat revealed by

snakes in different positions, with elongated or sinusoidal snakes being least

threatening, coiled snakes intermediate, and snakes poised to strike most

threatening.

Taking these behavioral and neurological findings together, we predicted that

pulvinar neurons would respond preferentially to images of snakes in threatening

postures compared to less threatening postures in bottom-up visual processing.

To test this prediction, 3 photos of snakes in threat displays with open mouths

and 3 photos of snakes in less threatening postures were presented to Japanese

macaques in a delayed non-matching to sample (DNMS) task. Here, we report

that pulvinar neurons discriminate postural cues of snakes that are linked to their

level of threat, consistent with behavioral studies [28, 29].

Materials and Methods

Subjects

Two adult (1 female and 1 male) Japanese macaques, weighing 7.0–8.8 kg, were

used in this experiment. Each monkey was individually housed in indoor each
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cage (0.865 m60.710 m60.880 m) on a 12-hr on/12-hr off lighting schedule

with food available ad libitum. The monkeys were deprived of water in their home

cage and received juice as a reward during training and recording sessions.

Supplemental water and vegetables were given after each day’s session. To assess

the monkeys’ health, their weight was routinely monitored. The monkeys were

treated in strict compliance with the United States Public Health Service Policy on

Human Care and Use of Laboratory Animals, the National Institutes of Health

Guide for the Care and Use of Laboratory Animals, and the Guidelines for the

Care and Use of Laboratory Animals of the University of Toyama. This study was

approved by the Committee for Animal Experiments and Ethics at the University

of Toyama (Permit Number: A2013MED-46). Environmental enrichment (toys)

was provided daily, and all surgery was performed under anesthesia, and all efforts

were made to minimize suffering. No monkeys were sacrificed. The animals’

health status was monitored throughout the experiment, and kept in a good

condition for the animals to perform the task correctly (see below).

Experimental setup

The monkey sat in a monkey chair 68 cm away from the center of a 19-inch

computer display for behavioral tasks during the training and recording sessions

in a shielded room. The CRT monitor was set so that its center was on the same

horizontal plane as the monkey’s eyes. The monkey chair was equipped with a

responding button, which was positioned so that the monkey could easily

manipulate it. An infrared charge-coupled device (CCD) camera for eye-

movement monitoring was firmly attached to the chair by a steel rod. During

training and recording sessions, the monkey’s eye position was monitored with

33 ms time resolution by an eye-monitoring system [30]. The juice reward was

accessible to the monkey through a small spout controlled by an electromagnetic

valve. A visual stimulus generator (ViSaGe MKII Visual Stimulus Generator,

Cambridge Research Systems, UK) controlled the electromagnetic valve, the

timing of visual stimuli onset.

Visual stimuli

Figure 1A shows the stimulus set, consisting of 3 photos of snakes in open-

mouthed, threat display and 3 in closed-mouth, non-threat-displaying postures.

All images are of live venomous vipers. We used color images because previous

studies reported that color facilitates detection of snakes [13, 31] and we wanted

to simulate snakes as closely as they appear in nature. The stimuli were 256

digitized RGB color-scale images with their resolution of 2706270 pixels. Stimuli

were presented on a black background of 0.7 cd/m2 with their centers at the center

of the display. The luminance of each stimulus was determined by measuring

luminance of the circular area (radius, 6.35 cm) including each stimulus inside

the circle by means of a luminance meter (BM-7A; Topcon, Tokyo). The

luminance of these color stimuli was similar (6.005–6.445 cd/m2) [luminous
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intensity (total luminance) ranged from38.432 to 41.248mcd]. These stimuli were

displayed on a CRT monitor with a resolution of 6406480 pixels, and the size of

the stimulus area was 5–765–7 .̊

Our procedures follow those in Le et al. [24]. In that study, however, pulvinar

neurons were not examined for postural differences.

Behavioral tasks

The monkeys were trained to perform a sequential delayed non-matching-to-

sample task (DNMS) that required the discrimination of the visual stimuli (

Figure 1A and B) [24]. As illustrated in Figure 1B, the task was initiated by a

buzzer tone. Then, a fixation cross was appeared in the center of the display.

When the monkeys fixated on the cross for 1.5 s within 0.5–1.0˚window, a sample

stimulus was presented for 500 ms (sample phase). The control phase was defined

as the 100-ms period before the sample phase. Then, after an interval of 1.5 s, the

same stimulus appeared again for 500 ms between 1 and 4 times (selected

randomly for each trial). Finally, a new stimulus was presented (target phase).

Figure 1. Visual stimuli (A) and delayed nonmatching-to-sample (DMNS) task (B) used in the present
study. (A) Six photos of two categories of the stimuli including snakes in threat display and non-threat-
displaying postures. (B) Stimulus sequence in the DMNS task in which stimuli were sequentially presented
with a delay.

doi:10.1371/journal.pone.0114258.g001
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When the target appeared, the monkey was required to press a button within 2 s

in order to receive a juice reward (0.8 mL). When the monkey failed to respond

correctly during the target phase or to press the button before the target phase, the

trials were aborted and a 620-Hz buzzer tone was presented. The intertrial

intervals (ITI) lasted15–25 s (Figure 1B).

Training and surgery

The monkeys were trained to perform DNMS task for 3 h/day, 5 day/week. The

monkeys reached a 96% correct-response rate after 3 months training. After

completion of this training period, a head-restraining device (a U-shaped plate

made of epoxy resin) was attached to the skull under aseptic conditions [32, 33].

Subjects were initially anesthetized with a combination of medetomidine

hydrochloride (0.5 mg/kg, i.m.) and ketamine hydrochloride (5 mg/kg, i.m.), and

anesthesia was maintained by sodium pentobarbital (25 mg/kg, i.m.). For each

monkey, the U-shaped plate was anchored with dental acrylic to titanium bolts

that were inserted into the skull. We also implanted a reference pin, the location

of which was based on the zero coordinates defined in the stereotaxic atlas of the

brain of M. fuscata individuals [34]. During surgery, heart and respiratory

functions and rectal temperature were monitored (LifeScope 14; Nihon Kohden

Corporation, Tokyo, Japan). A blanket heater was used to keep body temperature

at 36¡0.5 C̊. Antibiotics were administered topically and systemically for 1 week

after the surgery in order to prevent infection. Two weeks after surgery, each

monkey was retrained while the head was painlessly fixed to the stereotaxic

apparatus with the head-restraining device. The performance criterion (.90%)

was again attained within 2 weeks.

Stereotaxic localization of the pulvinar for recording

Before recording from the pulvinar in each hemisphere, a tungsten marker

(diameter: 500 mm) was inserted near the target area under anesthesia, and three-

dimensional magnetic resonance imaging (3-D MRI) scans of the monkey head

were performed. The 3-D pictures of the monkey brain with the marker were

reconstructed by computer rendering. Three-dimensional stereotaxic coordinates

of the target area were determined in reference to the marker in the 3-D

reconstructed brain [35]. Since the recording from the two monkeys is in

progress, the two monkeys are alive in the present time, and pulvinar neurons

were stereotaxically plotted on the 3-D reconstructed brain [24].

Electrophysiological procedures and data acquisition

After the monkeys relearned the DNMS task at a rate greater than 85% correct, we

commenced daily recording of neuronal activity during the DNMS task. Neuronal

activity was recorded from each hemisphere in both subjects. A glass-insulated

tungsten microelectrode (0.8–1.5 MV at 1 kHz) was stereotaxically inserted into

the pulvinar vertically to the orbitomeatal plane in a stepwise fashion by a pulse
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motor-driven manipulator (SM-21; Narishige Scientific Instrument Lab, Tokyo,

Japan). Only neuronal activities with a signal-to-noise ratio greater than 3:1 were

recorded. The analog signals of the neuronal activities, the triggers for visual

stimuli, juice rewards, button pressing, and the X-Y coordinates of eye position

were digitized at a 40-kHz sampling rate and stored in a computer through a

multichannel acquisition processor (MAP; Plexon Inc., Dallas, TX, USA) system.

The digitized neuronal activities were isolated into single units by their waveform

components using the Offline Sorter program (Plexon Inc.). Superimposed

waveforms of the isolated units were drawn in order to assess the variability

throughout the recording sessions and then transferred to the NeuroExplorer

program (Nex Technologies, Littleton, MA, USA) for further analysis.

Analysis of basic characteristics of pulvinar neurons

Spike sorting was performed with the off-line sorter program for cluster analysis

(Off-line sorter, Plexon Inc.). Each cluster was checked manually in order to

ensure that the cluster boundaries were well separated and that the waveform

shapes were consistent with the action potentials. For each isolated cluster, an

autocorrelogram was constructed, and only units with refractory periods greater

than 1.2 ms were used for further analyses. Finally, superimposed waveforms of

the isolated units were drawn in order to check the consistency of the waveforms.

In addition, all pulvinar neurons were analyzed by autocorrelograms. The

autocorrelograms indicated that the refractory periods of the all pulvinar neurons

were greater than 2 ms throughout the recording sessions, which indicates that

the isolated spikes were recorded from single neurons.

We analyzed single neuronal activity during the following 2 periods: 100 ms

before (pre) and 500 ms after (post) the onset of stimulus presentation in the

sample phase. The baseline firing-rate was defined as the mean firing rate during

the 100-ms pre period. Significant excitatory or inhibitory responses to each

stimulus were defined by a Wilcoxon signed-rank (WSR) test (p,0.05 for

statistical significance) of the neuronal activity between the 100-ms pre and the

500-ms post periods. In order to investigate the temporal changes in the neuronal

responses, the 500-ms post period was further divided into ten 50-ms epochs. The

mean neuronal firing rate was calculated for each of these epochs. The response

magnitude was defined as follows: the mean firing rate in each epoch minus the

mean firing rate during the 100-ms pre period. Each neuron was categorized

based on a t-test (P,0.05), in which response magnitudes to all 3 snakes in threat

display were compared with those to all 3 snakes in non-threat-displaying

postures. For this analysis, two peri-event histograms for the two categories of

snakes were constructed using the entire set of data for all trials and all stimuli.

‘‘Threat’’ neurons were defined as such if the response magnitudes to the snakes in

threat display were larger than those to the snakes in non-threat-displaying

postures (P,0.05). ‘‘Non-threat’’ neurons were defined as such if the response

magnitudes to the snakes in non-threat-displaying postures were larger than those

to the snakes in threat display (P,0.05). Equal neurons were defined as such if
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there was no significant difference in response magnitudes between the categories

of snakes (P.0.05). Furthermore, in each neuron, mean response magnitudes to

the snakes in threat display and snakes in non-threat-displaying postures were

computed. Then, grand averaged response magnitudes over all responsive neurons

to snakes in threat display and snakes in non-threat-displaying postures were

compared by paired t-tests (p,0.05).

In addition, we analyzed the response latency to each visual stimulus. For each

neuron, 1 peri-event histogram was constructed with the entire set of data for all

trials and all stimuli. Neuronal response latency was defined as the interval from

the onset of stimulus presentation to the time at which the neuronal firing rate

exceeded the mean ¡2 SD of the baseline firing-rate. Averaged response latencies

over all responsive neurons to the snakes in threat display and snakes in non-

threat-displaying postures were compared by paired t-tests (p,0.05). All data

were expressed as mean ¡ SEM.

Multidimensional Scaling analysis (MDS)

Multidimensional scaling (MDS) is a method that is used to simplify the analysis

of relationships that exist within a complex array of data. MDS constructs a

geometric representation of the data in order to show the degree of the

relationship between stimuli that are represented by the data matrix (see Young

and Hamer [36] for more details). MDS has been used to examine stimulus

relationships with data matrices representing neural activity in response to the

particular stimulus array (i.e., snakes, monkey and human faces, monkey hands,

eye- and face-like patterns, and simple geometrical figures) [24–26]. In the present

study, the 6 visual stimuli were used to elicit neuronal activity in the pulvinar.

Data matrices of neural activity in a 7866 array derived from the 82 visually

responsive neurons were generated. Euclidean distances as dissimilarity between

all possible pairs of 2 visual stimuli were calculated by using the visual responses

of the 82 pulvinar neurons. Then, the MDS program (PROXSCAL procedure,

SPSS statistical package, version 16) positioned the visual stimuli in the 2-

dimensional space with the distances between the stimuli representing the original

relationships (i.e., Euclidean distances in the present study) [37, 38]. Finally, the

clusters of the visual stimuli were evaluated by discriminant analysis.

Results

Characteristic of pulvinar neuronal responses to snakes

Of 821 neurons recorded, 115 neurons responded to the visual stimuli. Of these

neurons, 78 neurons were tested with all stimuli in this experiment. From this 78-

neuron subset, 45 neurons responded more strongly to snakes in threat display

(threat neurons) (t-test, P,0.05), 24 neurons responded more strongly to snakes

in non-threat-displaying postures (non-threat neurons) (t-test, P,0.05), and 9

neurons showed no difference between these two kinds of the stimuli (equal
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neurons) (t-test, P.0.05). Statistical analysis indicated that there was a significant

difference in the ratios of these 3 types of neurons [x2-test, x2(2)525.0,

P53.4561026]. Post-hoc tests indicated that the ratio of the ‘‘threat’’ neurons

was significantly greater than that of the ‘‘non-threat’’ neurons (Ryan’s method

with adjusted significance level, P50.016). Furthermore, mean response

magnitudes were significantly greater to snakes in threat display than to snakes in

non-threat-displaying postures (paired t-test, t(77)53.056, P50.003) (Fig. 2A).

There was no significant difference in response latencies to the snakes between the

threat displays and non-threat-displaying postures (55.3¡4.7 and 56.2¡4.7 ms,

respectively, paired t-test, t(51)50.424, P50.673) (Fig. 2B).

Multi-dimensional scaling analysis

The data sets of response magnitudes of the 78 visually responsive pulvinar

neurons in epochs 1 (0–50 ms) and 2 (50–100 ms) after stimulus onset were

subjected to multidimensional scaling (MDS) analysis (Fig. 3). After measurement

of R2 and stress value for up to four dimensions, two-dimensional space showed

the best results. In the two-dimensional spaces, R2 values of epochs 1 and 2 were

0.94098 and 0.98019, respectively. In both epochs, two clusters, one for snakes in

threat displays and another for snakes in non-threat-displaying postures, were

recognized. Discriminant analyses showed that correct percent of discrimination

was 100% in both epochs (p50.01 and p50.013, respectively).

Locations of pulvinar neurons

The pulvinar neurons that responded to the visual stimuli were located at the

medial and dorsolateral parts of the pulvinar, consistent with our earlier study

[24].

Discussion

We found here that neurons in the medial and dorsolateral pulvinar responded

more strongly to snakes with open-mouthed threat displays compared with snakes

with non-threat-displaying postures. In addition, the MDS results indicated that

threat-displaying snakes were separated from non-threat-displaying snakes as

early as epoch 1. Snakes threatening to strike are more dangerous than those in

other postures [39, 40], and monkeys apparently perceive this because they react

behaviorally most strongly to snakes poised to strike, less to coiled snakes, and

least to sinusoidal snakes [28]. In a previous study, we found that pulvinar

neurons responded more strongly and more quickly to snakes compared with

faces and hands of monkeys and simple geometrical patterns [24]. Our present

results, together with previous research, suggest that the pulvinar plays an

important role not only in detecting snakes but also in assessing the degree of

threat posed by them. There is an urgency from snakes preparing to strike that

requires immediate and focused attention if one is to avoid being bitten. An
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important function of the pulvinar is in filtering out irrelevant visual stimuli [41].

The greater response magnitudes in pulvinar neurons that we found to snakes

poised to strike may assist in focusing the primate’s visual attention on the snake.

Response latencies to snakes in general are shorter compared with other stimuli

[24, 25, 42]. Nevertheless, here we found no significant differences in response

latencies between snakes with and without threat displays. In nature, snakes often

rely on ambush to kill their prey. By definition, ambushing requires predators to

remain undetected until they strike. Many snakes have evolved coloration and

patterns that help to camouflage them, and their narrow, limbless bodies allow

them to blend among the background vegetation, reducing their detectability and

making it challenging even for primates to see them [4, 43]. If ambush predators

are detected and monitored, they lose the element of surprise and are much less

dangerous. While it is not necessary to detect snakes from far away, it would be

beneficial for their primate prey to detect them before they prepare to strike.

Figure 2. Comparison of mean response magnitudes (n578) (A) and latencies (n552) (B) to the snakes
in threat display vs. non-threat-displaying postures. There was no significant difference between
response latency to threatening snakes and snakes in non-threat-displaying postures (paired t-test,
t(51)50.424, P50.673). In contrast, mean response magnitudes to snakes in threat display were significantly
larger than to non-threat-displaying snakes. ** significant difference (paired t-test, t(77)53.056, P50.003).
Columns and error bars indicate means with SEM.

doi:10.1371/journal.pone.0114258.g002
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Indeed, as snakes can strike quickly, the ability to detect them within striking

range regardless of their posture may be crucial for avoiding potentially deadly

snakebites. It should be noted, however, that the snake images were presented in

the central visual field, where differences in behavioral response latencies among

stimuli are less than those in the peripheral visual field in humans [44]. Further

studies are required to investigate neuronal responses to snake images presented

in the peripheral visual fields.

In summary, this study contributes new neurophysiological evidence that

further supports that the pulvinar in primates is highly responsive to snake visual

stimuli [24]; population activity of neurons in the medial and dorsolateral

pulvinar of Japanese macaques differentiates between snakes presenting a greater

threat from those presenting a lesser threat as early as 50 ms after stimulus onset.

Figure 3. Distributions of the 6 visual stimuli in a two-dimensional space resulting from
multidimensional scaling using responses of the 78 neurons to these stimuli in epoch 1 (A), epoch 2
(B). In epochs 1 and 2 (A, B), the snakes in threat display were separated from the non-threat-displaying
snakes.

doi:10.1371/journal.pone.0114258.g003
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This fast visual information processing suggests that snake images are processed in

a bottom-up visual pathway to the pulvinar. The ability to quickly detect snakes

visually and selectively focus on them while also quickly cueing in on their level of

threat from their posture would appear to have clear a evolutionary benefit. Our

results are thus consistent with the Snake Detection Theory, which argues that

snakes provided a novel selective pressure that contributed importantly to the

origin of primates and the evolution of the their visual system [3, 4].
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