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RESUMO 

O objetivo deste trabalho é investigar os mecanismos de alguns problemas geotécnicos 

submetidos a grandes deformações, e mais especificamente o cone de penetração e 

escorregamentos na área de estabilidade de taludes. O fenômeno de grandes deformações em 

Geotecnia pode ser observado em problemas de ensaios de campo como SPT, CPT, DMT; 

ensaios de laboratório como o ensaio de cone e de palheta; em aplicações práticas como a 

cravação de estacas e em encostas após a ruptura de um talude. Uma das principais limitações 

na prática da engenharia geotécnica é que as formulações tradicionais para o cálculo de 

estruturas dependem da hipótese de pequenas deformações. Na última década, com o aumento 

da capacidade computacional e surgimento de novos métodos numéricos, tornou-se factível a 

modelagem numérica de problemas de grandes deformações, gerando a possibilidade de 

estudá-los em maior detalhe. Este trabalho centra-se na aplicação do Método do Ponto 

Material (MPM). O MPM é uma ferramenta numérica que adota um esquema de discretização 

Euleriano-Lagrangiano, o que fornece um esquema sofisticado para resolver o balanço de 

momento linear quando se observam grandes deformações. O método foi aplicado à análise 

de ensaios de penetração de cone em laboratório e a problemas reais de escorregamentos de 

taludes com grandes movimentos de massa. Inicialmente, foram feitos ensaios diretos e 

indiretos de resistência ao cisalhamento em amostras de caulim. O programa de ensaios de 

laboratório inclui o ensaio de palheta, ensaio de cone, ensaio de compressão oedométrica e 

ensaio de compressão triaxial convencional. Como produto dos ensaios de laboratório, foram 

propostas algumas relações entre parâmetros de estados críticos e o ensaio de queda de cone. 

Também baseado nos ensaios de laboratório, o programa NairnMPM foi testado e calibrado 

para resolver problemas geotécnicos simples como o ensaio de cone e o colapso de uma 

coluna de solo. Depois disso e com o intuito de verificar a capacidade do MPM para resolver 

problemas de grande escala, foram simulados os escorregamentos de taludes na barragem de 

Vajont, na Itália, e na rodovia Tokai-Hokuriku, no Japão. Finalmente, foi testado o processo 

de modelagem do escorregamento de Alto Verde, na Colômbia, e as variáveis dinâmicas 

previstas no modelo foram usadas no cálculo de risco. Os resultados se ajustaram muito bem 

às observações de campo, destacando a potencialidade do MPM como ferramenta prática na 

modelagem de vários problemas de grandes deformações na engenharia geotécnica. 
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ABSTRACT 

The goal of this work is to investigate the mechanisms of various geotechnical problems 

subjected to finite strains, more specifically the fall cone test and run-out process during 

landslides. Large deformation phenomena may be observed in field testing such as SPT, CPT, 

DMT; laboratory testing such as fall cone test, mini-vane test, and practical problems such as 

pile driving and run-out process during landslides. The main limitations in the practice of 

geotechnical engineering are due to the fact that a wide number of design frameworks are 

based on the small strain hypothesis. In the last decade, with the increasing computational 

capacity and the development of novel numerical methods; solving large deformation models 

have become feasible. This fact allows studying in detail a wide number of phenomena in 

geotechnics. This work focuses on the application of the Material Point Method (MPM). The 

MPM is a numerical tool that adopts a Eulerian-Lagrangian scheme. Moreover, it allows a 

solid framework to solve the linear momentum balance when finite strains are observed. The 

method was used in the simulation of the fall cone test and real scale mass movements in 

landslides. Initially, direct and indirect shear strength measurements on kaolin clay were 

performed. The laboratory testing program included mini-vane shear test, fall cone test, 

oedometric compression, and conventional triaxial compression test. As a result of the 

laboratory testing, interesting relationships between the critical state parameters and the fall 

cone were established. Furthermore, NairnMPM open source code was tested and calibrated 

using the laboratory results to later solve simple geotechnical problems such as fall cone test 

and the collapse of a soil column. Afterwards, the possibility of simulating real-scale 

problems in landslides was addressed. The slope failure in Vajont, Italy, and Tokai-Hokuriku 

Expressway, Japan, were considered. Finally, the framework was tested in a landslide in Alto 

Verde, Colombia. The computed dynamic quantities were used in risk assessment of 

landslides. The results matched very well with field observations highlighting the potential of 

using MPM as a practical tool for modelling various problems involving large strains in 

geotechnical engineering. 
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1. INTRODUCTION 

In Geotechnical Engineering, a number of large deformation problems arise and some are still 

unsolved to date. Some typical examples include field testing like SPT, CPT, DMT; 

laboratory testing such as vane test, fall cone test; and practical applications, for instance, the 

run-out processes during landslides and pile driving. These problems are very hard to simulate 

numerically. The main reason is the difficulty to properly assess the geometry changes due to 

loads and different boundary conditions. Another challenge is the accurate representation of 

material behaviour. To exemplify the complexity in a typical geotechnical problem, the 

simulation of a pile that is driven into the ground is mentioned. The goal of a practitioner is to 

calculate the bending moments needed for the design of piles in addition to quantifying the 

bearing capacity produced by the friction between pile and ground. The difficulty in this 

problem is quite high because severe deformations occur and the material is subjected to 

extreme strains causing compactions and localised failure due to stresses reaching upper 

limits. 

1.1 MOTIVATION 

The main motivation for this research are the limitations of using traditional and widely used 

numerical methods such as the Finite Element Method (FEM) to solve large deformations 

problems. On the other hand, in the geotechnical engineering practice, it is very frequent the 

occurrence of stiff objects (e.g. piles or rods with different tip shapes) indenting a softer 

media (soil) or even the case of large scale masses deformation such as in landslides. A 

common factor in these cases is the rapid loading rate, generally leading to undrained 

condition. 

To shed light on this subject, the scientific hypothesis defended in this thesis establish that 

a large deformation problem such as observed in an indentation problem or landslides 

subjected to fast load frames, may be solved using the Material Point Method (MPM) 

adopting a mixed Eulerian-Lagrangian framework. 

1.2 OBJECTIVES 

The main objective of this research is the simulation of problems involving large strains, such 

as indentation problems and large-scale landslides. Furthermore, the thesis also focuses on the 

behaviour of soils subjected to rapid loadings described by an undrained condition. For this 
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purpose, the Material Point Method (MPM) is used taking advantage of a mixed Eulerian-

Lagrangian formulation. 

To attain this goal, the thesis trills a series of specific objectives as shown therein. 

 Testing of a computational program, based on the Material Point Method; 

 Simulation of a cone penetration problem, subjected to its weight, in a saturated soft 

clay mass under undrained conditions; 

 Development of a methodology to estimate soil parameters for normally consolidated 

clays in undrained conditions, based on simple tests, such as the fall cone test and the 

mini vane shear test; 

 Simulation of real large-scale landslides and comparison with field observations and 

literature reports. 

1.3 METHODOLOGICAL FRAMEWORK 

The focus of the approach and methodology begins with a literature review that shows the 

main aspects of the Material Point Method, the fall cone test as a typical example of 

penetration problem in geotechnics and run-out process during landslides. Next, it is 

performed the installation and testing of NairnMPM, an open source code from Oregon State 

University. 

As part of the laboratory work, it was performed a series of test in industrial kaolin clay. 

The laboratory tests included the widely known fall cone test and mini-vane in clay samples 

for different water contents. 

Based on the results obtained in the characterization phase, it was possible to establish, a 

simple calibration procedure for the fall cone apparatus using the relationship in the model 

proposed by Hansbo (1957). 

Furthermore, the calibration results and its relationship with the shear strength 

characterization allowed us to develop a simplified methodology to obtain advanced material 

parameters, based on simple laboratory tests. 

Back to numerical modelling, the fall cone test is modelled using the Material Point 

Method to assess the applicability of the computational tool to solve large deformation and 

movement of soil masses. 

The application of the Material Point Method is later extended to the simulation of large 

scale run-out processes in landslides such as observed in Vajont and Tokai-Hokuriku 
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Expressway. Then, an application of the framework of risk assessment for landslides is also 

introduced. 

Finally, we present the concluding remarks of the research with the outlook to future work. 

Besides this thesis, the present study produced the following list of publications: 

1. An assessment of the material point method for modelling large scale run-out processes in 

landslides (Llano-Serna et al., 2015). 

2. A Simple Methodology to Obtain Critical State Parameters of Remolded Clays Under 

Normally Consolidated Conditions Using the Fall Cone Test (Farias & Llano-Serna, 2016). 

3. Numerical modelling of Alto Verde landslide using the Material Point Method (Llano-

Serna et al., 2015). 

4. Numerical, theoretical and experimental validation of the material point method to solve 

geotechnical engineering problems (Llano-Serna & Farias, 2015). 

5. Simulations of fall cone test in soil mechanics using the material point method (Llano-

Serna et al., 2016). 

1.4 THESIS OUTLINE 

The reminder of the thesis is structured as follows. Chapter two introduces the background 

and basic concepts that are relevant in the context of the thesis. It begins by discussing how 

large strain problems are traditionally addressed and the limitations of the state of the art. 

Moreover, a historical description of the development of the MPM is followed by the basic 

equations that describe the method and the use of MPM in geotechnics. 

Still, in the second chapter, it is addressed the description of the fall cone test and basic 

concepts of landslides which are the main topics addressed in the research. 

The third chapter is one of the most interesting results of the research. It is related to the 

fact that critical state parameters may be estimated conveniently from a simple test such as the 

falling cone. The procedure developed and described show how a simple calibration 

procedure allows approximating critical state parameters within a precision of around 20%. 

Chapter four summarizes the materials and methods used in the experimental campaign. It 

also applies and validates the methods described in chapter three. This is one of the most 

valuable findings of the research; it complies an improved interpretation and calibration of the 

fall cone test. 

In the fifth chapter is presented the numerical validation of the material point method 

(MPM) to solve large strains problems. The numerical validation is focused on the 

simulations of the fall cone test presented previously. The simulations are verified against 
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laboratory results including the evolution of penetration with time. Additionally, validation 

exercises were also performed in regards of the horizontal deformations of a synthetic slope 

and the collapse of a soil column. The simulations compare well with experiments available 

in the literature. The code used and the numerical simulations were able to capture all the 

main features of the problems analysed herein and proved to be a convenient tool to tackle 

this kind of problems. 

In chapter six it is demonstrated the predictive capabilities of the MPM for the simulation 

of run-out processes during landslides. The approach is focused on the post-failure behaviour 

and in particular, to the computation of important quantities such as run-out distance, 

maximum velocity, and energy release. The validation is conducted based on simulations of 

two case studies of different scales, namely the Tokai-Hokuriku Expressway failure in Japan 

and the Vajont landslide in Italy. The results show a very good agreement with field and other 

numerical observations. Finally, the methodology is applied to a real case problem where the 

outputs of the MPM simulations are used as a tool in the quantification of risk. 

Chapter 8 concludes the thesis by providing a summary of the outcomes and presenting an 

outlook for future studies. 
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2. LITERATURE REVIEW 

When a continuum body is on movement, its state variables (e.g. stress or temperature) may 

change with time. These changes may be described by two mathematical approaches (Lai et 

al., 1993). The first method tracks the ―elements‖ comprising the continuum as they move in 

space and time. This approach is widely known as the Lagrangian frame of reference. 

Lagrangian approaches are mostly used in solid mechanics and numerical methods such as the 

Discrete Element Method (DEM). The second approach considers the changes of the state 

variables in fixed positions and is known as a spatial or Eulerian frame of reference. In 

Eulerian methods, the change of the stress state, for example, is measured in a fixed point of 

the medium as a function of time. Note for instance that a single space position may be 

occupied by different particles for changes in time. This approach is mostly used in fluid 

mechanics. 

2.1 FINITE ELEMENTS FOR SOLVING LARGE DEFORMATIONS 

The numerical modelling both in industry and academy is mainly dominated by the use of the 

Finite Element Method, FEM (Augarde & Heaney, 2009). However, the traditional 

formulation of the FEM does not provide a solid framework to solve large strain problems. 

Moreover, FEM may present numerical instabilities such as mesh entanglement when 

significant strains are experienced. 

As an alternative, and preserving the basic concept of FEM an updating of the Lagrangian 

discretization was introduced (Bathe et al., 1975). This process is called re-meshing and 

involves the mapping of the stress variables from the deformed mesh to a new mesh 

introducing errors in the converged solution (Wieckowski et al., 1999). 

Recent FEM formulations show a good performance solving complex problems, building 

sequences or non-linear constitutive models under bi-dimensional conditions. However, the 

framework presents issues in three-dimensional models when mesh generation, re-meshing, 

different soil layers or curved interfaces are involved (Augarde & Heaney, 2009). 

2.2 NUMERICAL METHODS APPLIED IN FINITE DEFORMATION 

PROBLEMS 

The modelling of large deformation problems is not straightforward. The complexity of the 

phenomena relies on the severe deformations that cause compactions and localised failure due 

to stresses reaching upper limits. Recent advances in computational capacity allow the use of 
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the so-called particle based methods to tackle these problems. The most popular choices 

include the discrete element method (DEM) developed by Cundall & Strack (1979); the 

smoothed particle hydrodynamics (SPH) (Gingold & Monaghan, 1977); and the MPM 

derived for solids by Sulsky et al. (1994). 

In the DEM each material grain is considered independently; thus the macroscopic 

properties cannot be directly calibrated as it would be expected for a method based on 

classical mechanics, also, is nearly impossible to model the correct number of elements 

(grains) in a geotechnical problem (Boon et al., 2014). On the other hand, SPH and MPM are 

derived from a continuum mechanic framework that allows the use of conventional 

geotechnical constitutive models. Nevertheless, many geotechnical problems involve 

boundary interfaces, and SPH may cause loss of consistency in such cases. Furthermore, the 

use of stabilization techniques seems to be necessary to achieve convergence (Bandara & 

Soga, 2015). In MPM, accuracy may also be lost due to extrapolations and interpolations in 

the auxiliary grids needed for the enforcement of balance of momentum. A detailed 

description of large-deformation methods common in solid mechanics and geotechnical 

engineering is also available in Li & Liu (2004) and Soga et al. (2016) 

2.3 BACKGROUND AND FORMULATION OF THE MATERIAL POINT 

METHOD 

The original development of the MPM was called particle-in-cell (PIC) by Harlow (1964). 

Later it was first applied to fluid dynamics by Brackbill & Ruppell (1986). Sulsky et al. 

(1995) developed the first extension of the method for solid mechanics and called it MPM. 

Today, one of the most used approaches of the MPM is the generalization of the framework 

developed by Bardenhagen & Kober (2004). It is called Generalized Interpolation of Material 

Point Method (GIMP), and the idea was to solve numerical noises produced by the transit of 

material points across cell boundaries. 

The basic principle behind the MPM is depicted in Fig. 2.1. MPM discretization: (a) initial 

two-dimensional example, and (b) two-dimensional MPM approximation (Brannon, 

2014).Fig. 2.1. Fig. 2.1 (a) shows an object to be analyzed using the MPM overlapped with 

the yellow grid. The object is then converted or transformed into a red dot numerical 

representation that is unique, as shown in Fig. 2.1b called material elements. The discretised 

object is then ready to be analyzed. Its movement will depend on the direction of the 

movement of each material point, and the gridlines surrounding each material point will move 

according to the movement of the sphere. The material points move with the integration of 
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time on a fixed Eulerian grid. Recently, it has been found that the numerical framework 

provided by the MPM is suitable for modelling landslide and penetration problems. The main 

advantage of using the MPM is that material flow is allowed by a solid Eulerian-Lagrangian 

approach. Also, it allows for solid mechanics constitutive models. Thus, the traditional 

formulations of soil mechanics are still valid, enhancing the applicability of the MPM (Soga 

et al., 2016). 

 

 

(a) 

 

(b) 

Fig. 2.1. MPM discretization: (a) initial two-dimensional example, and (b) two-

dimensional MPM approximation (Brannon, 2014). 

The numerical method used in this work is fully described by Buzzi et al. (2008) and is 

based on the generalised version of the Material Point Method (Bardenhagen & Kober, 2004). 

At a local basis, the Master Dissertation published by Llano-Serna (2012) describes in detail 

the derivation of the numerical method, and here we discuss the main points.  

2.3.1 FORMULATION 

The balance of linear momentum at any point of a continuum body is described by 

  div b a      (2.1) 

where   is the second order (total) stress tensor, ―div‖ is the divergence operator,  is the 

scalar density field, b  is the vector of external body forces, and a  is the acceleration vector 

at the point under observation.  

To achieve a numerical solution, the weak form of the balance of linear moment is 

obtained by means of the weighted residuals method. The equation (2.1) is thus multiplied by 

arbitrary test functions and integrated over the initial volume. Further, by applying integration 

by parts and employing the Green-Gauss theorem, the following equation is obtained 

 :
A V V V

dw
w tdA w bdV dV w adV

dx
             (2.2) 
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where t  represents the vector of tractions applied to some part of the surface. Therein,  w x  

comprises a set of arbitrary continuous functions as in a Galerkin formulation.  

In the MPM, equation (2.2) is discretised considering the vertices of the background grid 

and a material point, resulting in 

 
p p np n p np p np

p p pA

V G S tdA m bS q S
 

  
 

      (2.3) 

where the subscript ―p‖ denotes a material point, ―n‖ denotes a vertex (node) of the 

computational grid and q  the vector of linear momentum. Summation over all material points 

or all vertices are denoted by 
p

 and 
n

 respectively. Equation (2.3) can hence be 

rewritten as follows 

 
int ext

n n nf f q    (2.4) 

Furthermore, the internal and external forces are transferred to the vertices using 

interpolation functions nS  and matrix npS . The matrix npS  takes a weighted average of 

function Sn considering only the volume Vp occupied by the material point "p" in the vicinity 

of vertex "n". This is computed as follows 

      
*

1
np n p

p V

S x S x x dV
V

    (2.5) 

where 
*

pV V V   represents the support volume of the characteristic function p  that 

accounts for the contribution of the material points to the computational grid. Each material 

point is assigned a characteristic function p  that constitutes a partition of unity in the initial 

configuration ―i‖. 

Matrix npS  is also used to extrapolate the rate of linear momentum 
pq  at the centre of 

mass of the material point to the grid vertices as shown in the right side of the equation (2.3). 

The internal forces 
int

nf  are obtained from the contributions of material points "p" around 

vertex "n" and depend on the volume Vp, on the stress 
p  at the material point and a stress 

transfer matrix npG . This matrix represents an average of the matrix nG  which contains the 

derivatives of function Sn. 
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2.3.2 CONTACT 

It should be noted most problems involve more than one material, and a contact law 

between different materials must be adopted. Contact models in the MPM were first 

developed by Bardenhagen et al. (2001) and later improved by Lemiale et al. (2010) and 

Nairn (2013). Separate velocity fields are used for each material involved in the simulation. 

Vertices that received contributions from different types of materials use a contact mechanism 

to adjust their linear momentum. A normal direction between both materials is calculated and 

a normal force norm

nf  at a contact point is computed by projecting the linear momentum along 

this normal direction. Then, the maximum tangential force tan

nf  is obtained from a simple 

frictional model as follows: 

 tan norm

n nf f     (2.6) 

Therein,  is the frictional coefficient that relates normal and tangential forces. 

2.4 MPM IN GEOTECHNICAL ENGINEERING 

After the main developments of the MPM at the beginning of the century; it has been used for 

a wide range of engineering benchmarks, such as a fixed beam deformed under its own 

weight (Beuth et al., 2007; Beuth et al., 2011); oedometric compression test (Beuth et al., 

2007; Zabala 2010); vertical deformations in synthetic slopes (Beuth et al., 2008; Vermeer et 

al., 2008); shallow foundations (Ma, 2002; Coetzee, 2004; Raghav, 2005; Zhang et al., 2009); 

models including discontinuities (Karuppiah, 2004; Daphalapurkar et al., 2007; Guo & Nairn, 

2006) and nano-indentation (Ma, 2002; Raghav, 2005). 

More sophisticated geotechnical case studies include the analysis of active and passive 

earth pressure (Coetzee, 2004; Vermeer et al., 2008; Beuth et al., 2011; Zhang et al., 2009); 

the local stability of retention walls (Wickowski, 2004; Vermeer et al., 2008; Wieckowski, 

2011); collapse of embankments reinforced with geotextiles (Zhou et al., 1999); run-out 

processes in artificial slopes (Numada et al. 2003; Shin et al. 2010; Andersen & Andersen, 

2009, 2010); foundation of dams over soft soils (Zabala, 2010); pull-out testing (Coetzee et 

al., 2005); and pile driving (Wickowski, 2004). A detailed discussion of most of these 

examples was carried out by Llano-Serna (2012). 

The last three years have been very active regarding publications of the MPM used to solve 

complex geotechnical engineering problems. Some examples include applications in the 

offshore industry (Al-Kafaji, 2013; Lim et al., 2014; Dong et al., 2015); pile installation 
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(Lorenzo, 2015; Phuong et al., 2014); slope instabilities due to dynamic forces produced by 

earthquakes (Abe et al., 2015; Bhandari et al., 2016); and more recently the coupling of the 

hydro-mechanical problem (Abe et al., 2014; Muller & Vargas Jr, 2014; Soga et al., 2016). 

However, two main limitations are regarded. In the first place, there are very few examples of 

real-scale applications fully validated, and in second place, most of the publications are 

focused on the descriptions of phenomena. Very limited applications of the new features 

provided by the MPM are discussed. 

2.5 THE FALL CONE TEST 

In the present study, the most popular fall cone method is considered, i.e. the British cone 

with a 30° tip angle and mass of 80 g. The fall cone equipment complies with the British 

Standards (BS 1377-2, 1990). The test starts with the cone tip touching the soil surface and 

then it is released to fall freely under its own weight. The final penetration depth of the cone 

is registered after 5s. 

Hansbo (1957) established one of the most accepted relationships between the undrained 

shear strength (su) and the cone penetration depth (h) as follows: 

 
2u

KQ
s

h
  (2.7) 

where Q is the total cone weight, h is the final penetration depth of the cone, and K is 

Hansbo´s cone factor.  

Fig. 2.2 shows a schematic diagram of the final configuration in the fall cone test. 

According to Koumoto & Houlsby (2001), the load Q at the end of the penetration process 

can be approximated by bearing capacity theory resulting in: 

  2 2tan 2ch u ch uQ N s A N s h  
 (2.8)

 

where Nch is the cone bearing capacity factor in which the heave produced by the displaced 

soil is taken into account, A is the cone surface in contact with the soil, and  is the cone tip 

angle.  

Koumoto & Houlsby (2001) also calculated values of Nch by means of the method of 

characteristics, using a linear simplification of the heave (left-hand side of Fig. 2.2). Hazell 

(2008) applied the finite element method with adaptive meshing to assess the influence of the 

curved heaved surface on the Nch factor (right-hand side of Fig. 2.2). 
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Fig. 2.2. Schematic illustration of the cone indentation. The left-hand side represents the 

analysis by Koumoto & Houlsby (2001), and the right-hand side represents finite element 

analysis results by Hazell (2008). 

By combining the quasi-static and dynamic analyses, Koumoto & Houlsby (2001) 

expressed the fall cone factor K as: 

 
 2

3

tan 2ch

K
N



 


 (2.9)

 

where,  is the ratio (su/sud) of the static shear strength (su) of the clayey soil to its dynamic 

shear strength (sud) from the fall cone test. 

Further studies showed that the bluntness of the cone point has no effect on the K factor 

(Claveau-Mallet et al., 2012). The equation (2.9) is often used to estimate K based on 

assumed values for Nch and  or using previous experimental observations. This procedure is 

not recommended for the type of cone used here because results from the 30° cone test are 

highly sensitive to cone surface roughness. Experimental calibration is highly recommended, 

and this issue is pursued in this thesis. 

Despite the above, it is very common in the recent literature to adopt a cone factor from 

classical or previous references instead applying proper calibration (i.e. Stone & Kyambadde, 

2007; Mahajan & Budhu, 2009; Cevikbilen & Budhu, 2011; Vinod & Bindu, 2011; Azadi & 

Monfared, 2012; Boukpeti et al., 2012; Claveau-Mallet et al., 2012; O‘Kelly, 2012; Das et al., 

2013). Calibration procedures are presented by Sharma & Bora (2003), Rajasekaran & 

Narasimha Rao (2004), and Zentar et al. (2009). However, these lack proper interpretation 


h
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heave

Non-Linear
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under the fall cone test theory. Classical works by Hansbo (1957), Karlson (1977), Wood 

(1982) and Wood (1985) can also be found; some of these results will be discussed later. 

2.6 NUMERICAL MODELLING OF LANDSLIDES (THE RUN-OUT) 

The increase of urban activities near or in mountainous areas requires more attention to the 

mitigation of threats due to landslides. Landslides are caused by hydrological, environmental, 

or anthropogenic changes. Due to the potential velocity, impacting forces or run-out 

distances, a slope failure may result in large movement of mass with serious consequences to 

people and infrastructure. Even if a potential landslide can be predicted, it remains the 

question on how far the debris can travel. The answer is critical to prevent further losses and 

mitigate the hazard by the use of protection barriers (Kishi et al. 2000; Peila & Ronco 2009; 

Shin et al. 2010; Brighenti et al. 2013; Mast et al. 2014). Another important step is the 

quantification of the force imparted by the landslide (Ashwood, 2014) to optimize 

engineering structures and barriers. 

According to Skempton & Hutchinson (1969), a landslide involves three stages: (i) pre-

failure deformations; (ii) the failure itself; and (iii) post-failure displacements or deformation. 

The degree of shear resistance loss during failure determines the velocity of the run out. This 

failure stage also involves kinematic changes from sliding to flow or fall, which is also 

relevant to the post-failure behaviour and destructiveness of the landslide (Hungr et al., 2014). 

Slope stability analysis in geotechnical engineering practice is currently focused on 

establishing the pre-failure state and determining the physical conditions that may trigger the 

slide. Typical analyses use limit equilibrium methods, plastic limit theorems or the finite 

element method (FEM) (e.g. Hughes, 1984; Griffiths & Lane, 1999; Belytschko et al., 2013; 

Zienkiewicz & Taylor, 2013). 

The pre-failure state of a slope is usually assessed by quantification of the so-called Factor 

of Safety (FOS). However, the traditional approach of slope stability analysis disregards the 

potential consequences of a landslide. The most recent approaches from a technical point of 

view are focused in the quantification of risk (Coelho-Netto et al., 2007; Uzielli et al., 2008, 

2015; Jaiswal et al., 2010; Li et al., 2010), and monitoring, analysis and forecasting of 

hazards (Dai et al., 2002; Ho & Ko, 2009; Calvello et al., 2015). As described before, the 

MPM features make it very attractive to evaluate the consequences of large deformation 

processes as in rapid landslides. Thus, the analysis presented in this research will be focused 

on the predictive capabilities of the method to estimate the consequences of a landslide. More 

traditional approaches (e.g. FOS quantification) are then disregarded. 
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The only real case study using the MPM found in the literature is the work by Andersen & 

Andersen (2009) on a landslide near Lønstrup, Denmark, in 2008. Therefore, this work aims 

at further exploring the capabilities of the MPM for modelling real landslides. 

Total stress analysis incorporated in the current MPM is appropriate for the post-failure 

analysis of slopes. Nevertheless, a more detailed approach may be possible using effective 

stress analysis considering the liquid-solid interaction. Some novel examples to solve the 

resulting coupled formulation can be found in Pedroso (2015a) and Pedroso (2015b) where 

the mixture theory has been applied considering each constituent (e.g. liquid and solid). As a 

consequence, mass balance equations must be solved, and the process is slower. The effective 

stress analysis of landslides with MPM is a future topic outside the limits of this thesis. To 

this end, other aspects such as dealing with some limitations due to post-failure behaviour 

(Abe et al., 2014; Bandara & Soga, 2015) must be investigated as well. 

Other alternative techniques that allow for a proper geometrical and constitutive 

representation of run-out processes exist as well, although mostly based on computational 

fluid dynamics such as the works by Hungr (1995); McDougall and Hungr (2004); Sawada et 

al. (2004); Ward & Day (2011); Vacondio et al. (2013); Chen & Zhang (2014); Sawada et al., 

(2015). The run-out model specific to solid mechanics includes the work by Lo et al. (2013); 

Zhang et al. (2013); Pastor et al. (2014); Sassa et al. (2014); Boon et al. (2014) and Albaba et 

al. (2015). However, as Mast et al. (2014) states, the main drawback with some these 

alternative methods are related to the scale of the domain and even the constitutive models 

derived for Non-Newtonian fluids. Finally, empirical and analytical methods are also 

available as described by Hungr et al. (1984) and Corominas (1996); however, they have 

many limitations. 

 

 

  



 

14 

3. PROPOSED METHODOLOGIES FOR THE CALIBRATION OF 

CONE PENETRATION TESTS AND OBTAINING CRITICAL 

STATE PARAMETERS  

In this chapter, it is initially presented a simple methodology to calibrate the so-called cone 

factor K, proposed by Hansbo (1957), with the aid of mini-vane shear tests. Based on these 

two tests it is later proposed a simple methodology to obtain the main compressibility and 

strength parameters of critical state models. The methodologies will be validated in the next 

chapter. 

3.1 THE FALL CONE TEST AND ITS CALIBRATION 

For the sake of convenience, equation (2.7) is rewritten as: 

 2

1us F h
 (3.1)

 

where the new factor is simply F1=KQ.  

Thus plotting pairs of (h
-2

, su) obtained experimentally and fitting a linear regression would 

readily give an estimate of F1, from which the cone factor K can be directly obtained for a 

known value of the cone weight (Q). The values of penetration h can be obtained from cone 

penetration tests, and the values of undrained shear strength (su) can be obtained from mini-

vane tests with clays in the same conditions. This methodology will be applied later in the 

thesis. 

 Koumoto & Houlsby (2001) noted that equation (2.8) could be simplified to: 

 2

2uQ s F h
 (3.2)

 

where the factor F2 can be expressed as: 

  2

2 tan 2chF N  
 (3.3)

 

Comparing equations equation (2.7) and (3.2), it is clear that F2 equals the inverse of factor 

K. Therefore, calibration of F2, using experimental pairs of (Q/su, h
2
) and a linear regression 

or (Q/su, h) and a quadratic regression, gives a basis for interpreting the relation between the 

cone factor K and the cone bearing capacity factor the Nch.  

With a calibrated fall cone factor K, for a given cone, the fall cone test can be used to 

estimate the undrained shear strength (su) for a range of clayey soils; i.e., the calibration 
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procedure just needs to be performed once, since the K factor depends only on the cone 

roughness characteristics. Re-calibration is recommended to check the results.  

The methodology to calibrate the fall cone used in this thesis can be summarized as 

follows: 

1. Plot the results of cone penetration (h) and vane shear tests (su), with the value 

of h
-2

 in the abscissa versus su in the ordinates. Later, fit the best straight line through the 

origin. It is possible to find the slope F1 and consequently the value of the cone factor K 

using equations (2.7) and (3.1); 

2. The test data can be fitted applying equation (3.2). Thus, the bearing capacity 

factor Nch of the cone is determined using equation (3.3); 

3. Combining the experimental values of K and Nch, the strain ratio applied by the 

cone can be estimated back-calculating  variable from equation (2.9) 

3.2 CRITICAL STATE PARAMETERS 

The critical state concept is usually used to predict the undrained strength of clayey soils. For 

an isotropically consolidated soil that has undergone a load and unload cycle, it may be 

assumed that the stress path will reach the failure point on the critical state line (CSL). The 

main idea can be depicted in Fig. 3.1. It must be noted that the isotropic virgin compression 

curve or normally consolidation curve describes a straight line in a semi-log space usually 

denoted by . Similarly, the swelling or recompression curve also describes a straight line 

usually denoted by . These parameters;  and  define de deformability characteristics of the 

soil whereas the strength is defined by the slope M. This research will focus its effort in the 

estimation and validation of the material parameters , and M. The Poisson‘s ratio , is 

assumed constant as 0.499 unless a different value is specified, consistent with undrained 

conditions for saturated clayey soils. Moreover, the state parameters are disregarded. 

Koumoto & Houlsby (2001) proposed a procedure to determine fitting variables a and b 

related to the traditional critical state parameters. The key assumptions for this computation 

are briefly described here for the sake of completeness. Furthermore, the theoretical 

derivations of equations (3.4)-(3.11) are largely the same as Koumoto & Houlsby (2001). 

However, we show improvements in the procedure for the experimental data interpretation. 

The following relationship between the gravimetric moisture content (w) and the undrained 

shear strength (su) is established: 
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b

u

a

s
w a

p



 
  

 
 (3.4) 

where pa is the atmospheric pressure, and a and b are empirical fitting coefficients. These 

coefficients can easily be determined from a linear fitting of equation (3.4) in the logarithmic 

space (log w–log su). 

 

Fig. 3.1. The critical state concept for isotropically consolidated soils. Taken from Mayne 

(1980) 
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Parameter a is related to the water absorption, and retention capacity of the soil and b is 

related to soil compressibility (O‘Kelly, 2013). Combining equations (2.7) and (3.4), the 

following expression is obtained: 

 
2

K
b

a

Q
w a

p h



 
  

 
 (3.5) 

Equation (3.5) can be further extended by considering critical state theory, which 

establishes the well-known relationships for the Critical State Line (CSL), expressed by: 

 
'

lna

a

p
e e

p


 
   

 
 (3.6) 

In the equation (3.6), p’ is the mean effective stress p’=(’1+’2+’3)/3,  is the 

compressibility coefficient and ea is the void ratio for p’= pa. A reference pressure pa=100 

kPa (1 bar) is usually adopted. 

Instead of equation (3.6), Koumoto & Houlsby (2001) proposed the following expression, 

which is linear in the bi-log (e-p’) space (see also Hashiguchi & Chen, 1998): 

 
'

ln( ) ln( ) lna
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p
e e

p


 
   

 
   or   

'
a

a

p
e e

p


 

  
 

 (3.7) 

Using the relationship Gsw=Se, for a saturated condition (S=1, and assuming that the 

specific gravity of the pore water is unity), and the gravimetric moisture content w, expressed 

in percentage, equation (3.7)-b becomes: 

 
'

100 a

s a

e p
w

G p


 

  
 

 (3.8) 

where Gs is the specific gravity of the soil particles. 

The mean effective stress p‘ can be related to the deviatoric stress qf (index f for failure) at 

the critical state according to the following expression: 

 
fq Mp  (3.9) 

where: 

        
2 2 2 2 2 21

6
2

x y y z x z xy yz xzq                  
  

 (3.10) 

For conventional triaxial compression tests (e.g. CU-CTC, it is consolidated undrained 

conventional triaxial compression), the stress state is such that x=y=3, z=1 and 
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xy=yz=xz=0, then q=(1-3) resulting in qf=2su at failure. This is the value used by Koumoto 

& Houlsby (2001). However, the normal stresses during the vane shear test are negligible, and 

the stress state is better represented by x=y=z=0, yz=xz=0 and xy≠0, then q= 3 xy and 

qf= 3 su at failure, see Fig. 3.2. Both cases are conveniently represented in this thesis by a 

relationship between the deviatoric stress qf and the undrained shear strength (su) as follows: 

 
f uq s  (3.11) 

where =2, as assumed by Koumoto & Houlsby (2001) for CU-CTC and =√3 for the mini-

vane shear test. As a result, M is not constant and depends on the stress and deformation 

conditions. This is further illustrated in the following section. 

 

 

Fig. 3.2. Stress state during different strength testing; (a) CU-CTC; (b) Mini-Vane test 

 

It is worth noting that the cross-section of the true failure envelope on a deviatoric plane is 

circular (von Mises) since the fall cone test is considered to happen under undrained 

conditions in a clayey soil. Note that drained conditions can lead to different shapes such as 

the Matsuoka-Nakai criterion (Matsuoka & Nakai, 1974). 

Finally, by substituting equation (3.11) into equation (3.9), and the resulting expression for 

p‘ into equation (3.8), the following equation is obtained: 
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By comparing equations (3.4) and (3.12), the following expressions relating the 

coefficients a and b and the Cam Clay parameters (ea,  and M) are found: 

 
100 a

s

e
a

G M





  

  
 

 (3.13) 

 

 b   (3.14) 

which are similar to those derived by Koumoto & Houlsby (2001), with the exception of the  

factor. With these coefficients and related expressions, the results of the fall cone and vane 

shear tests can be used to calibrate the deformability and strength parameters of the Cam-clay 

model as proposed by Roscoe et al. (1958). 

The coefficient b, according to the equation (3.14), gives the parameter, whereas the a 

parameter describes a single equation (3.13) for two unknowns (ea and M); hence an iterative 

methodology has to be considered for calibrating the fall cone test. 

 

3.2.1 ITERATIVE COMPUTATION OF CRITICAL STATE PARAMETERS 

The results of a calibrated fall cone test, or those obtained directly from the vane shear test, 

can now be used to estimate the position of the critical state line (ea) and its slope (M or cs). 

The methodology proposed here to obtain these parameters is described as follows: 

1. The process starts by computing the a and b coefficients by fitting the test data 

according to the equation (3.4) and exploring the relation w - su. Note that, from 

equation (3.14), b corresponds to slope of the NCL, i.e., the virgin compressibility 

coefficient (See Fig. 3.3 (a) 

2. The slope of the critical state (, assumed parallel to the NCL, is already 

determined. Thus the CSL becomes completely determined if a point = (e, p) is 

selected – the initial guess for this point is discussed in Section 4.2See Fig. 3.3 (b); 

3. Using the values of  and =(e, p) in equation (3.6), the value of the void 

ratio (ea) for the reference pressure (pa) is establishedSee Fig. 3.3 (b); 

4. Because the samples in the fall cone test and the vane shear test are considered 

undrained, the initial and final void ratios ei are equal to each other at failure; hence 

ef=eiSee Fig. 3.3 (c) 



 

20 

5. Using the values of void ratio (ef =ei) and the CSL equation, the values of 

mean effective stresses at failure (p’f) are obtained using equation (3.6). See Fig. 3.3 

(d); 

6. Now, for each initial void ratio condition, the corresponding deviatoric strength 

(qf) is obtained from the computed (or experimental) undrained shear strength (su) via 

equation (3.11). See Fig. 3.3 (e); 

7. With p’f obtained as in step 5 and qf from step 6, the best linear regression 

through the origin and fitting the points (p’f, qf) is computed. Then, the slope M of the 

critical state line is obtained, and the corresponding friction angle at critical state (cs) 

can be readily calculated by means of (see Fig. 3.3 (f)): 

  1 3
sin

6
cs

M

M
   

  
 

; (3.15) 

8. By using the computed value of the slope M (and ), a new ea is obtained 

considering the coefficient a from step 1 via equation (3.13). This means that a new 

position of the CSL based on the new value ea is established; 

9. Finally, by comparing the new reference void ratio ea with the value previously 

estimated the process is repeated from step 2 if the difference is not acceptable. In step 

2, last computed value of ea is the input value. Iterations are performed until 

convergence on ea (smaller than a tolerance) is obtained. 

A Matlab routine for solving the algorithm is included in Appendix A of the thesis. 

Note that the derivations presented here do not account for the effect of anisotropy on the 

undrained shear strength, this means that the procedure applies for remoulded soils. This 

limitation is not severe when considering critical state conditions because a remoulded soil 

can constitutively be described by residual parameters. 

Note also that equation (3.15) is valid in CU-CTC conditions only; the relationship 

between M and cs varies with the Lode angle (conveniently observed in the octahedral 

plane). Here, it is assumed that M is constant as in the classical Cam-clay model. Nonetheless, 

more appropriate failure criteria are available in literature such as Matsuoka & Nakai (1974). 
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Fig. 3.3. Illustration of the iterative process to determine critical state parameters. 

(a) (b)

(c) (d)

(e) (f)
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4. LABORATORY TESTING 

The main objectives of the laboratory tests described in this Chapter were to generate data for 

the calibration of cone penetration apparatus and to test the proposed methodology to obtain 

critical state parameters of saturated clays. The cone penetration results are also used to verify 

the ability of the MPM to simulate this type of indentation problem in the next chapter. The 

fall cone measurements comply with the procedures described in the British Standards (BS 

1377-2, 1990), see Fig. 4.1(a). 

 

(a) 

  

(b) 

Fig. 4.1. Equipment used (a) Fall cone test; (b) Mini-vane shear test. 

Commercial kaolin clay was used in all tests. The following tests were performed besides 

the falling cone: material characterization; mini-vane shear; consolidated undrained 

conventional triaxial compression (CU-CTC); and one-dimensional consolidation. 

The mini-vane shear tests follow the standard ASTM D 4648M (2010), see Fig. 4.1(b).. 

The vane shear apparatus is equipped with a calibrated spring and a dial gauge to measure the 
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angular strain. The vane blades are 13 mm in height and width. Seven moisture contents 

ranging from w=40% to w=63% were considered, see Table 4.1; three soil samples per each 

moisture content were tested for repeatability. Hence, three fall cone and three vane shear 

tests were performed, and the average results were analysed. To avoid bias errors, all tests 

were performed with the same equipment and by the same operator. 

Table 4.1. Water content for each one of seven tested samples. 

Sample 
Water content (%) 

1 40 

2 42 

3 45 

4 50 

5 55 

6 60 

7 63 

 

To further asses the proposed calibration procedure, data from other authors performing 

similar tests with the 30° fall cone test and mini-vane shear tests were compared. A classical 

reference involving Speswhite kaolin and the Cambridge Gault clay was considered (Wood, 

1985). It is important to note that there are three main differences between the tests described 

herein and those found in Wood (1985): 

1. The fall cone used by Wood (1985) was wiped with an oily cloth before the 

test in order to minimise soil-cone friction. This practice is not considered in the BS 

1377-2 (1990) standard and has consequences as discussed later. 

2. The fall cone used by Wood (1985) had a mass of 100 g instead of the standard 

80 g; however, this is less critical since the main expressions presented in this work 

take into account the cone weight. 

3. The geometry of the vane shear blades used by Wood (1985) is different to that 

used in the present tests; however, the mechanisms and deformation rates are 

comparable.  

More recent results are also considered, such as tests on kaolin and organic sediments 

gathered in northern France by Zentar et al. (2009), and tests performed by O‘Kelly (2012) 
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who characterised an amorphous organic clay in Ireland. Both references present tests 

performed with comparable procedures to those used in the present work.  

To assess the critical state parameters of the kaolin used in the present study, conventional 

CU-CTC and oedometer tests were performed, following the standards ASTM 

D2435/D2435M (2011) and ASTM D4767 (2011), respectively. Samples with gravimetric 

moisture contents of 50% and 45% were prepared. To check the repeatability of the tests and 

to make sure that full saturation is achieved, a complete shrinkage curve was constructed 

using the drying procedure given by Fredlund et al. (2002). 

4.1 MATERIAL CHACTERIZATION 

Kaolin samples with liquid and plastic limits of 54% and 39%, respectively, were used to test 

the proposed calibration procedure. The specific gravity of the soil particles were measured 

using an electronic Helium-based pycnometer resulting in Gs=2.61. The samples were 

prepared with different moisture contents and later were stored at rest overnight.  

The initial conditions regarding void ratio and water content for the vane shear, fall cone, 

CU-CTC and oedometer tests are shown in Fig. 4.2, where the CU-CTC test data correspond 

to the samples inside the steel mould, before being placed in the test chamber. In Fig. 4.2, the 

dashed line corresponds to a fully-saturated state (S=100%), in which the initial void ratio can 

be approximated by ei=Gs w. 

 

Fig. 4.2. Initial void ratio of the samples employed in this work for different tests. 

Comparisons against the shrinkage curve. 
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The difference between the initial moisture contents of the samples prepared for the CU-

CTC and oedometer tests is related to the high compressibility of the kaolin. Since the sample 

for oedometer test is both prepared and tested inside the stainless steel ring, the preparation 

procedure is easier when handling samples of higher moisture content. On the other hand, the 

CU-CTC samples are larger, and they need to be removed from the steel ring in which they 

are prepared to be transferred to the triaxial chamber. This process can be challenging when 

handling very soft clays and, to avoid problems, lower moisture contents are needed. Because 

of these difficulties, as indicated in Fig. 4.2, full saturation is not achieved at the beginning of 

the CU-CTC tests. However, this is later fixed in the CU-CTC test when applying back 

pressure to the triaxial chamber during the saturation stage. 

4.2 CONE CALIBRATION 

Equation (3.1) is used to investigate the relationship between the cone penetration squared h
2
 

and the mini-vane undrained shear strength su. Fig. 4.3 shows a regression analysis, in which 

the slope of the resulting line is the product KQ. The results from the present tests are fitted 

by the solid line in Fig. 4.3, while the dashed lines indicate other authors‘ results. Thus, it is 

simple to calculate the cone factor K=0.498. 

In Table 4.2, the calculated cone factors K are shown together with the regression 

coefficients; the high values of R² are noted indicating that equation (2.7) is indeed able to 

estimate su from h. As expected, the highest K value corresponds to the tests by Wood (1985), 

because of the use of oil as a surface lubricant. On the other hand, lower cone factors are 

obtained in tests with rough cone surfaces (Koumoto & Houlsby, 2001). 

It is worth mentioning that Wood (1985) reported a cone factor K=0.85 in contrast to 

K=0.696 obtained herein. The reason for this difference can be explained by the fact that 

Wood (1985) used results from two different cones to calibrate a single cone factor. As a 

result, his K value does not capture the roughness of a single cone; but a sort of mean value 

instead. This is not a recommended procedure. From Table 4.2, it can be clearly observed that 

different cones with the same geometry produce different K values, due to their surface 

characteristics. 

O‘Kelly (2012) performed vane shear tests in amorphous organic clay samples in order to 

measure the undrained shear strength at different moisture contents, but later assumed K=1.33 

according to Koumoto & Houlsby (2001). This is also not recommended because, from 

equation (2.7), much higher values of the undrained shear strength are obtained. With K=1.33, 
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shear strengths almost 2.4 times higher than direct measurements with the mini-vane shear 

test are obtained. 

 

Fig. 4.3. Correlation between undrained shear strength su and cone penetration h from test 

results in this work and results from the literature: (a) all data sets, and (b) zoom near the 

initial part of the graph. 
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The calculated fall cone factors K presented in Table 4.2 can also be compared with the 

test results of Hansbo (1957), who used a 30° cone. Hansbo (1957) calculated K=1.0 and 

K=0.8 for undisturbed clayey soils using different types of samplers and field vane shear tests 

for the cone calibration, respectively. As might be expected, the K factors from Hansbo 

(1957) are higher than those obtained here because he used field vane shear tests, whereas the 

present study employed mini-vane shear tests. It is noted that the cone factor K implicitly 

accounts for the effect of the confining pressure in addition to anisotropy effects. In field 

tests, the undisturbed soil may exhibit anisotropy with respect to undrained shear strength. 

The use of mini-vane shear equipment by Hansbo (1957) had the intention of providing better 

constitutive data because the influence of anisotropy is largely removed in remoulded 

samples. 

Table 4.2. Calculated values of K and Nch for different cones. 

 Equation (3.1) fitting Equation (3.2) fitting 

F1 K R² F2 Nch R² 

This work 388.72 0.498 0.974 1.464 6.488 0.980 

O‘Kelly (2012) 443.06 0.565 0.848 1.855 8.226 0.856 

Zentar et al. (2009) 298.06 0.380 0.945 1.413 6.264 0.950 

Wood (1985)* 682.26 0.696 0.960 1.126 4.992 0.934 

* Cone weight, Q= 0.981 N (100 g) 

 

A quadratic regression procedure can be employed to calculate F2 using equation (3.2); the 

results of which are given in Fig. 4.4. Values of Nch can then be determined using equation 

(3.3). The experimental value found here was Nch=6.488. According to the theoretical study 

performed by Koumoto & Houlsby (2001), the experimental bearing capacity factor varies 

from Nch=9.616 for fully-rough cones to Nch=4.992 for smooth cones. This study compares 

very well (Fig. 4.4 and Table 4.2) with the test data of Wood (1985), in which the roughness 

effect was removed. It is also worth mentioning that all results from the present tests lie in the 

range established by Koumoto & Houlsby (2001), and also compare reasonably well with the 

numerical computations of Hazell (2008), which resulted in 5.056 ≤ Nch ≤ 10.241. 

One of the most challenging issues related to the use of equation (2.9) is the determination 

of =su/sud. To find the correct  values, Koumoto & Houlsby (2001) used an extrapolation 

process based on standard triaxial tests to estimate the rate of shear strain during the shearing 

stage of the test. This process led them to find =0.74 as an estimate. 
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Fig. 4.4. Normalised cone weight Q/su versus final penetration depth h. 

Fig. 4.5 shows a comparison of results of K versus Nch from different authors for the 

variation of the cone factor K computed using equation (2.9). The dashed line represents the 

data of Koumoto & Houlsby (2001), who extrapolated  from triaxial tests. The black square 

represents the results from a semi-rough cone surface with K=1.33, which is implicitly 

considered in recent works (i.e. Mahajan & Budhu, 2009; O‘Kelly, 2012; and Boukpeti et al., 

2012). The light shaded area contains the range of values proposed by Hazell (2008), who 

performed finite element simulations. 

Back-calculations considering the test results for the values of K and Nch in Table 4.2 are 

also plotted in Fig. 4.5. The results do not lie within either the Koumoto & Houlsby (2001) or 

Hazell (2008) ranges, indicating that strain rate effects are higher than considered in previous 

papers; e.g. =0.74 by Koumoto & Houlsby (2001), and 0.42 ≤ ≤ 1.0 by Hazell (2008). Note 

that a =1.0 represents no strain effects for fully static conditions, and decreasing values 

represent increasing strain effects. 
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To assess the experimental values of , the theoretical range of Nch results from Koumoto 

& Houlsby (2001) were adopted and, based on equation (2.9), a numerical fitting was 

performed. The results are plotted in Fig. 4.5 where the darker shaded area represents the 

boundaries of the back-calculated results. It is observed that the K-Nch values given in Table 

4.2 can readily be adjusted to 0.18 ≤ ≤ 0.35, as proposed by equation (2.9). This finding 

suggests that the dynamic shear strength sud may be up to 2.9-5.6 times higher than the static 

su value, depending on the cone surface characteristics. It is important to highlight that Nch 

was estimated using dynamic tests, while the expression given in equation (3.3) is based on a 

quasi-static formulation. Thus the experimental bearing capacity factors obtained here may be 

slightly lower than the corresponding ones obtained by static tests. More precise 

measurements under quasi-static conditions may improve the accuracy of the dark-shaded 

area in Fig. 4.5. However, it is unlikely that the shape of the fitted area and relative positions 

of the points would significantly change the analysis. 

 

Fig. 4.5. Fall cone factor K versus bearing capacity factor Nch for a range of  values. 
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Note that the  values obtained herein are somewhat dependent on the rate of rotation of 

the mini-vane shear, since the calibration procedure presumes undrained behaviour. 

Furthermore, vane shear test standards usually specify a range of rotation rates depending on 

the device used to apply the torque. According to ASTM D 4648M (2010), the rate of rotation 

can be 60 to 90°/min when using a torque spring device and 20 to 30°/min when applying 

torque through a stiff shaft. The vane strength is greatly influenced by the rate at which shear 

occurs. A hand crank manual device implies the variation in the rate of shear. This means that 

the value of  depends on (i) the rate of rotation applied by the mini-vane, (ii) the cone 

roughness that may affect the rate of indentation, or (iii) a combination of these. It must be 

highlighted that one of the limitations of this research is the lack of control of the rate of shear 

because of equipment limitations. Thus a more detailed influence of the rate of shear during 

mini-vane execution is not possible. 

This work highlights the differences of different calibration procedures. Additionally, the 

calibration relies on the careful treatment of the experimental data allowing to know and to 

interpret the cone roughness characteristics based on the theory. Our process takes advantage 

indeed of the theoretical derivation presented by Koumoto & Houlsby (2001) to explain the 

differences between different cone factors for the same geometry. In Table 4.2 for example 

calibrated K factors between 0.5 and 0.7 were obtained in spite of previous theoretical 

findings by Koumoto & Houlsby (2001; see their Table 4 and Fig. 8) proposing a generalized 

K=1.33 for the 30°, 80g cone.  

To obtain equation (3.8), a fully-saturation condition was considered which, according to 

Fig. 4.2, this condition is met by the present tests. In the case of the data presented by Wood 

(1985), an arbitrary cut-off for a gravimetric moisture content w=50% is assumed. Above this 

cut-off, samples of Speswhite kaolin tested by Wood (1985) were considered to be fully 

saturated and hence the void ratio can be approximated by e=Gsw. Samples with gravimetric 

moisture content smaller than 50% (ei<1.305) were discarded. The results are shown in Fig. 

4.6. 
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Fig. 4.6. Relationship between undrained shear strength and gravimetric moisture content. 

4.3 CALIBRATION OF CRITICAL STATE PARAMETERS 

The relationship between the gravimetric moisture content w and the undrained shear strength 

su is expressed by the equation (3.4), as proposed by Koumoto & Houlsby (2001). The 

calibration coefficients a and b are calculated, and the results are summarised in Table 4.3. 

Fig. 4.6 illustrates the resulting linear relationship in a bi-logarithmic space for the two data 

sets; the results of the present tests and the results of tests on Speswhite kaolin by Wood 

(1985), with the cut-off, is applied. On the basis of the high correlation coefficients (R
2
> 0.9) 

obtained, it can be concluded that equation (3.4) provides a good model. 

Table 4.3. Calibrated coefficients in equation (3.4) for Speswhite kaolin reported by Wood 

(1985) and the kaolin used in the present study. 

Sample 
a b R² 

Kaolin, This work 32.00 0.144 0.990 

Speswhite kaolin, Wood (1985) 21.27 0.265 0.997 
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The b coefficients in Table 4.3 correspond to the compressibility index ; see equation 

(3.14) and Parameter a is related to the water absorption and retention capacity of the soil. To 

further validate the methodology presented herein and the accuracy of equation (3.14), a 

conventional one-dimensional oedometer test is performed with the same kaolin as was used 

in the fall cone tests, to compute the b coefficient. The results are illustrated in Fig. 4.7 

showing the relationship between void ratio e and log p´. The measured value of b 

corresponds to a compressibility coefficient =0.148, which matches well the =0.144 

approximation given by equation (3.14). 

 

Fig. 4.7. Oedometer test results for kaolin also used in the fall cone test. 

4.3.1 FALL CONE TEST TO MEASURE CRITICAL STATE LINE 

To determine the slope M of the critical state line in p’-q space, it is necessary to initially 

locate the projection of the CSL in e-ln(p‘) space. According to Schofield & Wroth (1968), 

the experimental observations of critical state lines of several soils can be geometrically 
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(in e – ln p' space) seem to pass through; or at least pass very closely to. By drawing a line 

through the point  of slope , from the results of the fall cone test (see Table 4.3) the 

critical state line can be defined in e-ln(p‘) space. As a result, an initial guess for the reference 

value ea can then be computed from equation (3.6). 

Using the initial void ratio and the CSL determined above, the values of p' at failure are 

obtained, as plotted in Fig. 4.8 for ei=1.332. The values obtained are given in Table 4.4, which 

correspond to the first estimates (white diamonds in Fig. 4.8). Then, the values of qf in 

equation (3.13) are calculated, with the results given in Table 4.4 for =2 and = 3  . 

 

 

Fig. 4.8. Void ratio-log p‘ curve for determining the CSL. 
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both in 0.914 for =2 and for =√3, respectively. These results are very close to the initial 

guess (ea=0.916), with an error of only about 0.1%. The new ea is then used in equation (3.6) 

to compute new values of p‘ for each void ratio e, and the process is repeated by carrying out 

a new best fit using equation (3.9) for M. When the difference between the two computed 

values of ea is less than 0.01%, the iterative process is deemed to have converged. 

Table 4.4. Estimated stresses at failure from vane shear tests on kaolin samples from this 

work. 

ei su (kPa) p'f (kPa) qf=2su (kPa) qf= 3 su (kPa) 

1.039 22.5 43.0 45.0 39.0 

1.097 15.9 28.7 31.7 27.5 

1.180 7.6 16.1 15.1 13.1 

1.332 4.9 5.6 9.8 8.5 

1.440 2.8 2.6 5.6 4.9 

1.569 1.5 1.1 3.0 2.6 

1.588 0.8 0.9 1.7 1.5 

 

During the iterative calculations, the values of ea decrease and the values of M increase. 

The process converges slowly, and after 50 iterations the final values are ea=0.9008, 

M=1.1792 (cs=29.52
o
) for =2, and ea=0.9008, M=1.0211 (cs=25.87

o
) for = 3 . The final 

values are also plotted in Fig. 4.8 (Black dash symbols). Fig. 4.9 shows the failure envelope 

resulting from the iterative process in p’-q space. 

The estimated shear strengths are then verified by means of comparisons with several 

consolidated undrained triaxial tests, each with pore water pressure measurements. Three CU-

CTC tests are performed with initial mean stress values   
  of 75 kPa, 150 kPa and 600 kPa. 

These values are chosen for two main reasons: (i) the lower confining pressures (75 kPa and 

150 kPa) are close to the stresses estimated in the vane shear test; and (ii) mean stress value of 

600 kPa is closer to the stresses developed in the oedometer test, where the CSL were reached 

between 500 and 1000 kPa. 

Fig. 4.10 illustrates the stress-strain behaviours, while Fig. 4.11 shows the corresponding 

effective stress paths obtained from the CU-CTC tests. Fig. 4.10 shows that the maximum 

strain that could be induced under p‘=75 kPa is about 13%. At this confining stress, the 
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sample shows excessive bulging and the tests had to be stopped due to limitations with the 

measuring devices (LVTDs). 

 

Fig. 4.9. Critical state line in q-p’ space. Both modes of undrained failure (mini-vane shear 

and CU-CTC tests) are represented. The first estimates are represented by open symbols and 

dashed lines, and the final results are represented by solid lines and black symbols. The values 

in parenthesis indicate cs. 

As indicated in Fig. 4.11, the kaolin samples initially exhibit contractive behaviour, with 

increasing pore water pressures. The maximum pore pressure is in the axial strain range from 

3 to 4% for all three tests. The contractive behaviour is followed by a change of the effective 

stress path. Finally, dilative behaviour with decreasing pore pressure is observed, with the 

stress path reaching the CSL. The decrease of pore pressure leads to an increase in mean 

effective stresses and consequent gain in shear strength. 
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Fig. 4.10. Normalised stress-strain curves of CU-CTC test for kaolin. 

A straight line through the points that mark the limit between contractive and dilative 

behaviour is plotted in Fig. 4.11. The slope of this line is M=1.05, which corresponds to an 

angle of 26.5
o
; smaller than the estimated critical state friction angle for the CU-CTC tests. 

Coincidently, it is close to the angle computed for = 3  from the vane shear tests; however, 

these two results are unrelated. 

The critical state failure line estimated using the proposed methodology is also shown in 

Fig. 4.10, in which it can observed that the predicted CSL matches well the observed results. 

Therefore, the fall cone test can provide an estimate of the shear strength. 

The same procedure is used for calibrating the slope M of the critical state line for the data 

set of Wood (1985). Note that the  point is a mere estimate and faster convergence can be 

achieved with a different initial guess. Again, the slope  of the data from the fall cone tests is 
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obtained from Table 4.3 and the initial critical state (CSLi) is selected in e-ln(p‘) space, with 

an arbitrary initial reference value of ea= 0.8. The iterative process converges after 20 

iterations, with the results plotted in Fig. 4.12, in which the arrows illustrate the process for 

ei=1.386. The final values are similar (ea=0.6889) for M=0.8841 (cs=22.66
o
) and =2, and 

M=0.7657 (cs=19.85
o
) for = 3  . The initial and final estimates are plotted in Fig. 4.12 and 

Fig. 4.13. It is noted from Fig. 4.13 that some influence of the stress history may be observed 

for the samples tested with lower p’. A resembling behaviour is presented by Ortigão (1995) 

in Gray Clay from Rio de Janeiro. Where is shown how the stress history may affect the 

strength measurements for low confinement stress. This effect may be explained by suction 

effects during sample preparation as described by Burland (1990). All results are given in 

Table 4.5, in which qf is also given and calculated using equation (3.11) for =2 and =√3. 

 

Fig. 4.11. Comparison between the results from the proposed methodology (=2) and CU-

CTC effective stress paths. The values in parenthesis indicate cs. 
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Table 4.5. First estimate of stresses at failure for data collected from Wood (1985). 

ei
* su (kPa) p'f (kPa) qf=2su (kPa) 

qf= 3 su (kPa) 

1.867 1.1 1.2 2.1 1.9 

1.748 1.3 1.9 2.6 2.2 

1.599 1.8 3.3 3.7 3.2 

1.386 3.2 7.3 6.3 5.5 

1.306 4.1 9.9 8.3 7.2 

* Assumed for fully saturated samples with ei=wGs and Gs=2.61. 

 

 

Fig. 4.12. Void ratio-log p‘ curve for CSL determination using data from Wood (1985). 

Open circles stand for the projections performed for each sample. Closed symbols indicate the 

final position of the critical state line. 
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Fig. 4.13. Initial and final estimates of the linear relationship between deviatoric stress and 

mean effective stress for data collected from Wood (1985). The values in parenthesis indicate 

cs. 
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5. VERIFICATION OF THE MPM 

Despite the fact that the MPM is more time consuming, it presents several advantages when 

compared with the FEM for large deformation problems (Llano-Serna & Farias, 2015). The 

penetration of a laboratory fall cone into saturated clay is investigated in this work, as a step 

forward in the understanding of the mechanical behaviour of indenters in geotechnical 

engineering. The numerical analyses are performed using the NairnMPM 8.1.0 open source 

code (Nairn, 2012). 

 

5.1 NUMERICAL SIMULATIONS OF THE FALL CONE TEST 

Numerically, artificial roughness introduced by the surface in the case of coarse meshes is a 

problem, as discussed by Farias et al. (2012). To mitigate this problem, the discretization 

process is based in the cone generatrix (Farias et al., 2012). Additionally, the regions inside 

the cone contribute only with mass and stiffness; since the cone-soil interface governs the 

penetration process (see Fig. 5.1(a)). The adopted computational discretization uses a quarter 

of the actual geometry due to symmetry. Fig. 5.1(b) shows the tri-dimensional model of the 

adopted discretisation. Restrained horizontal displacements are imposed on the planes of 

symmetry. Note also that the clay sample is described as a parallelepiped instead of a 

cylinder, as described in the related standards (BS 1377-2, 1990). This was adopted as a 

simplification when applying the boundary conditions. Moreover, this consideration is not 

expected to greatly influence the final results, since the standardised cylinder is circumscribed 

in the model adopted herein. 

Typically, the rate of deformation of the clay under a falling cone is very high; it is in the 

order of 1 to 10 s
-1

. Thus, it is reasonable to assume that the clay sample is penetrated under 

undrained conditions, allowing analysis regarding total stresses. In such cases, Houlsby 

(1982) suggests the adoption of a simple elastic-perfectly plastic constitutive model, with the 

von Mises failure criterion. This means that the failure envelope on a deviatoric plane in stress 

space is circular. Hence, an elastic-perfectly plastic constitutive relationship is adopted. 

The parameters required for the kaolin are the undrained Young‘s modulus (Eu), Poisson‘s 

ratio (ν) and the undrained strength (su). The Young‘s modulus was estimated in (Llano-

Serna, 2012) by means of comprehensive soil mechanics laboratory testing, including 

oedometer and triaxial tests. The Poisson‘s ratio was assumed as 0.499, consistent with 

undrained conditions. Vane shear tests complying with ASTM standards were performed to 

determine the undrained shear strength of the clay. Four samples were simulated, and the 
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parameters for the samples are summarised in Table 5.1. Furthermore, conventional linear 

elastic parameters for steel were adopted for the cone. 

The initial conditions disregard geostatic stresses, because the height of the samples 

(40 mm) is very small. The weight of the cone is applied as an equivalent distributed load at 

the cone top. The adopted time step is Δt ≈ 3·10
-4

 s, and it is the same for all four models. To 

limit the computational time, the finest discretisation achieved is based on a structured mesh 

with 1.0 mm material point size and eight material points per cell. The total number of 

material points representing the model and the background mesh vertices is about 25,000 and 

11,000, respectively. The background mesh is not shown in Fig. 5.1 (b), for the sake of 

clarity. 

Table 5.1 Kaolin parameters, taken from Llano-Serna (2012) 

 Sample 1 Sample 2 Sample 3 Sample 4 

Young‘s modulus, Eu [kPa] 618 266 10 6 

Undrained shear strength, su [kPa] 23 16 3 1.5 

Unit weight, γ [kN/m³] 18.3 17.7 16.6 16.2 

 

 

Fig. 5.1. Discretisation strategy adopted for the simulation: (a) Surface-based cone 

discretisation; (b) Cone shell adopted to minimise the number of material points (Llano-

Serna, 2012) 

(b)(a)
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Fig. 5.2 illustrates the typical penetration pattern and the stress level (SL) field. The SL is 

the ratio active failure

vM vM   where active

vM and failure

vM  are the mobilised and failure von Mises 

stresses, respectively ( vM 23I  , and I2 is the 2
nd

 stress invariant). Note that the SL is 

always less than unity. The red shaded area in Fig. 5.2 shows the plastic regions from the 

MPM simulation for Sample 4. Note that the black dashed line compares very well with the 

plastic zone reported by Hansbo (1957). Nevertheless, a shaded area outside the limit is also 

noteworthy. This effect is caused by the numerical discretization of the cone tip during the 

penetration stages; however, it decreases towards the end of the penetration process. 

The penetration values (h) obtained from the numerical analyses are plotted against the 

values of undrained shear strength (su) for the kaolin and compared with the experimental 

results, as shown in Fig. 5.3(a). The strength-penetration model is calibrated against the 

numerical simulations and compared with the experimental results. The cone factor used in 

equation (2.7) and obtained from regression through the numerical values is K=0.498, which 

is very close to the value obtained from the experimental data K=0.500. 

Experimental observations show that the fall cone factor for a 30° cone tip ranges between 

1.2 and 0.7, where lower cone factors are expected for rough surfaces (Koumoto & Houlsby, 

2001). Thus, a coefficient of friction between the cone and soil µ= 1.0 was adopted. This high 

value of  reflects a limitation of the contact model adopted. More realistic results would be 

expected for a Mohr-Coulomb model incorporating adhesion, expressed as a fraction of the 

undrained strength of the soil. Nevertheless, as quoted by Koumoto & Houlsby (2001), a full 

understanding of the K factor in the case of a 30° cone tip angle remains challenging and 

warrants further research. 

It is interesting to analyse the evolution of the cone tip penetration. Mahajan & Budhu 

(2009) obtained curves of cone penetration versus time and cone penetration versus cone 

velocity during laboratory tests also using kaolin clay. The maximum penetration reported of 

13.95 mm is similar to that obtained for Sample 3 (see Table 5.1 and Fig. 5.3(a)), 

corresponding to 13.03 mm. Fig. 5.3(b) shows a comparison between the experimental results 

penetration-time curves and the simulations performed herein. 

The two curves in Fig. 5.3(b) agree very well, both qualitatively and quantitatively. This 

striking result is also confirmed by the penetration-velocity curves shown in Fig. 5.3(c) in 

which, in addition to the numerical and experimental results, the analytical evolution curve 

proposed by Koumoto & Houlsby (2001) is drawn. Notice that the maximum penetration 

depth and the equilibrium depth (acceleration zero) are approximately the same in the three 
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curves and that the numerical simulations match closely with the analytical solution given in 

Koumoto & Houlsby (2001). 

The remaining numerical curves for Samples 1,2 and 4 have the same format as presented 

in Fig. 5.3. For the sake of brevity, they are not displayed. 

 

Fig. 5.2. Sample 4: Penetration stages in tridimensional MPM cone penetration. The color 

map indicates the stress level ratio active failure

vM vMSL=  . 

40 mst  60 mst 
80 mst  95 mst 

40 mst  60 mst 
80 mst  95 mst 
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Fig. 5.3 Comparison between experimental and numerical results: (a) Relationship between 

penetration depth and undrained shear strength; (b) Sample 3: Time variation for experimental 

and numerical tests; (c) Sample 3: Theoretical, analytical and experimental velocity of the fall 

cone test. 
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5.2 NUMERICAL SIMULATIONS APPLIED TO SLOPE STABILITY 

In this section, we will show a series of numerical studies of small experiments with the 

intention of further validating the method. The results are compared against laboratory 

measurements and other numerical simulations. Difficulties, issues, and limitations are 

discussed. 

5.2.1 COLLAPSING COLUMN 

The validation is conducted by modelling the collapse of a column of soil. This laboratory-

scale experiment has received significant attention in the last years, both from an 

experimental perspective (Lajeunesse et al., 2004; Lube et al., 2004, 2005; Thompson and 

Huppert, 2007) or a computational one (Zenit, 2005; Staron & Hinch, 2005, 2007; Lacaze et 

al., 2008; Lacaze & Kerswell, 2009; Lagrée et al., 2011; Krabbenhoft et al., 2012; Huang et 

al., 2013). Further analyses of the column collapse are also available using continuum models 

(Kerswell, 2005; Mangeney-Castelnau et al., 2005; Lagrée et al., 2011). 

Mast et al. (2014) have investigated the strong influence of the friction angle and the 

column aspect ratio in the final geometry of the MPM model. The results from Lian et al. 

(2012) illustrate how well an adaptive version of the MPM can capture the collapse of 

granular materials in 2D and 3D. 

For columns made of purely granular materials, Lube et al. (2005) derived an experimental 

empirical formula. The following expressions to the height h∞ and width d∞ of the final 

deposit are found by them: 

 2
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  (4.2) 

where a= h0/d0 is the initial aspect ratio. From equations (4.1) and (4.2) above, we observe 

that there is a transition region between 1.8 ≤ a ≤ 2.8 for which no expressions for the final 

width are given, illustrating that even in this simple experiment, the complexity of the 

mechanical behaviour hinders any kind of predictive formulae. Therefore, only a complete 

computational analysis can produce satisfactory results.  
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We turn now to the collapse of clayey columns from which the results will guide the 

landslides simulations presented later on. It is interesting to note that there are not as many 

studies for clayey columns as there are for sandy ones. 

The computational model is fully described by Zhang et al. (2013) where a soil column d0 

wide and with a height of h0 is allowed to collapse under the action of gravity (g= 9.8 m/s
2
). 

To validate the MPM, a series of numerical simulations involving columns of different aspect 

ratios was conducted. In the following, all simulations used a simple elastic-perfectly plastic 

constitutive model with von Mises failure criterion. The parameters were adopted as in Table 

5.2 and were derived with basis on the previous results from Zhang et al. (2013) and 

laboratory tests conducted with samples of kaolin clay by Llano-Serna (2012). 

The simulations proceed from time t= 0 and are terminated at 0 4t t h g  . Fig. 5.4 

shows the results of two columns with aspects ratios a= 0.5 and 7.0 at different time instants 

during the collapse process – all columns are 0.1 m high. The dashed lines indicate the initial 

shape of the column. 

Table 5.2 Parameters for the clayey column collapse simulation 

Density,  (g/cm³) 2.0 

Shear strength,  su (kPa) 0.5 

Young‘s modulus, Eu (kPa) 1.0 

Poisson‘s ratio,  0.5 

 

Fig. 5.4. Collapse of clayey columns via the MPM: (a) aspect ratio a= 0.5; (b) a= 7.0. 
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From Fig. 5.4, we can observe that, first, at 1t  , for the aspect ratio a=0.5, the clayey 

column shows a typical ‗toe failure‘. On the other hand, for the aspect ratio a=7.0, an apparent 

‗buckling‘ is observed. In this case (a=7) the internal deformation patterns match quite closely 

other references (Krabbenhoft et al., 2012). 

The aspect ratio a=0.5 indicates multiple shear surfaces followed by high deformability. 

This is due to the low shear strength resistance. For a=7.0, a ‗back toppling‘ mechanism in the 

internal columns of the collapsing mass can also be observed in contrast to the frictional case 

that usually produces a vertical collapse (Mast et al., 2014). 

It is interesting to note that the final height normalized versus the aspect ratio, Fig. 5.5(a) is 

composed by two almost linear trends with an inflection point when a=2. In the other hand, 

the normalized width also presents a similar initial linear trend until a=1, Fig. 5.5 (b). This 

trend is followed by a transition trend, similar to the one observed by Lube et al. (2005). This 

transition zone also describes a linear behaviour between 1≤a≤5. After this point, the curve 

seems to reach a plateau with no significant increase in the normalized width with increments 

of the aspect ratio. Similar simulations are also presented in the paper by Zhang et al. (2013). 

 

Fig. 5.5. Normalized final height and width of clayey columns as a function of the aspect 

ratio (a) normalized height; (b) normalized width. 

5.2.2 SLOPE STABILITY 

As discussed before, the true potential of the MPM relies on its capacity to describe large 

strains. However, to further validate the results of the method it is compared the deformations 
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Plaxis software. Both models consider similar boundary conditions. Vertical and rotational 

constraints in the base, and horizontal constraints in the vertical segment opposed to the slope 

face, see Fig. 5.6. The reference material and properties are the same as described by Llano-

Serna (2012) for unconfined compression test in kaolin clay. The simulations adopted an 

elastic-perfectly plastic with von Mises failure criterion in the case of the MPM and Mohr-

Coulomb with =0 in the FEM model. The effect of seepage is not considered. 

 

 

Fig. 5.6. Schematic diagram of a synthetic slope for numerical simulations, the height, is 

variable.  

It was chosen an arbitrary 45° slope inclination and a variable height from 1 to 8 m. 

According to the Tailor‘s slope stability chart revisited by Steward et al. (2011), for clayey 

soils, the factor of safety in a slope with material properties as described by Llano-Serna 

(2012) would be very close to 1 when the slope reaches 8 m height. Fig. 5.7 shows the 

relationship between the horizontal displacement in the top of the slope and slope height for 

different slopes. The horizontal displacement was induced by the soil weight. The results are 

very similar to those described by Beuth et al. (2008). 

In Fig. 5.7 it is clear than despite small differences, the results using MPM and those 

calculated using Plaxis are the same. However, this similarity can be tracked until the slope 

reaches 5 m height. For higher slopes, the FEM approach is unable to fully calculate the 

horizontal displacements experienced in the slope. In the other hand, the MPM model can be 

used to compute the slope displacements until the critical height. 
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Fig. 5.7. Relationship between the horizontal displacement in the top of the slope and slope 

height for different geometries. 

Fig. 5.8 depicts the discretization scheme used in both methods and the final deformations 

stage in real scale. The figure shows the maximum comparable height (5 m). It is noted that, 

despite the differences, the result is very similar, see also Fig. 5.7. In Table 5.3, the 

comparison between the adopted meshing scheme and computational time can be seen. It is 

worth of mentioning that, despite the MPM being able to handle large strain problems, the 

MEF is still more efficient, specifically four times faster than the MPM. 

Table 5.3 Meshing schemes and computational time 

 MPM MEF 

Elements/type 3416/squares 1010/triangles (15 nodes) 

Discretization 8775 Material points 12120 Gauss points 

Computational time, s 134 30 

 

The results regarding deviatoric strains are shown in Fig. 5.9. It is noted the high 

similarities between the results from MPM and FEM in terms of magnitude and the 

distribution of strains. It is also noted that the kinematic locking is evident in the MPM 

FEM 
MPM 
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results, which is another disadvantage observed here. However, the deviatoric strains 

localized in the face of the slope gives a clear idea of the beginning of the failure region. 

 

Fig. 5.8. Mesh discretization and final deformations of a 5 m high 45° slope using 

numerical methods: (a) FEM; (b) MPM 

 

 

Fig. 5.9. Deviatoric strain in a 5m height 45° slope using numerical methods: (a) FEM; (b) 

MPM.  
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6. APPLICATIONS OF MPM TO LARGE SCALE PROBLEMS 

A series of numerical simulations of real cases involving run-out of largely displaced masses 

during landslides is shown in this section. 

6.1 TOKAI-HOKURIKU EXPRESSWAY 

The slope failure of Tokai-Hokuriku Expressway happened on September 23, 1999, due to 

heavy rains. The final failure area was 120 m wide and 125 m long with a volume displaced 

of about 110,000 m³. Ye (2004) published a detailed description of the failure process and 

used 2D and 3D solid-water coupled finite element-finite difference to simulate the slope‘s 

pre-failure states obtaining results that correspond very well to the field observations of the 

failure surface. As in the previous works, the cross-section adopted here corresponds to the 

central section adopted by Sawada et al. (2004) for a run-out simulation based on fluid 

dynamics (Fig. 6.1). 

 

Fig. 6.1. MPM numerical model of the cross section of the Tokai-Hokuriku Expressway. 

The failure surface is shown in Fig. 6.1 is determined from field observations and serves as 

a reference. The lower body is considered as a rigid material and does not take part of the 

sliding body; nevertheless, it interacts with the sliding material by means of a classical 

frictional contact model defined by the coefficient of friction, . Also, a square structured 

mesh with four points per cell is adopted as illustrated in Fig. 6.1. The simulation is carried 

out in such a way to activate the landslide by increasing gravity up to g= 9.8 m/s
2
 similar to 
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the collapse experiments in section 5.2.1. Table 6.1 summarises the input data for the 

numerical simulation. 

As described by Ye (2004), the slope failure was induced by heavy rains. Ye (2004) also 

introduced a soil-water coupled analysis to assess the slope failure. In fact, this kind of 

approach does only attend the first two stages of a landslide introduced by Skempton & 

Hutchinson (1969), i.e. (i) pre-failure deformations; (ii) the failure itself. The third stage: 

post-failure displacements is considered to happen in a few seconds which means that the 

cross-section of the true failure envelope on a deviatoric plane in stress space is considered 

circular (von Mises) and a rapid landslide can be considered to happen under undrained 

conditions. Considering that, the calculations presented here adopt ―total stress‖ analysis with 

undrained conditions. Hence, a simple elastic-perfectly plastic constitutive model with von 

Mises failure criterion is used, and the material parameters are chosen based on the values 

presented by Ye (2004). The friction coefficient between the sliding mass and the undisturbed 

base is calculated using the field data and the simple expression proposed by Hsü (1975) 

given by 

 
H

L
    (5.1) 

where H and L are the differences in height and length between the centre of mass of the 

mobilized mass before and after the landslide. The works from Corominas (1996) and Legros 

(2002) should help to give a wider insight into the understanding of µ. A time step t=0.5 ms 

was adopted based on the elasticity modulus of the material (Nairn, 2012). The corresponding 

mechanical parameters are summarized in Table 6.2. 

Table 6.1 Geometric model details in MPM simulation of the Tokai-Hokuriku Expressway 

landslide 

Cell size: 
2.0 m 

Material point size: 1.0 m 

Material points per cell: 4 

Material points representing sliding material: 1216 

Material points representing the rigid body: 12228 

Background mesh vertices: 11924 
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The results regarding the kinetic energy are presented in Fig. 6.2 showing the change in 

energy during the run-out. We can observe that the kinetic energy increases with time until 

the mean value reaches 275 J, corresponding to a velocity of 15 m/s. At the same moment (8 

seconds) the sliding mass reaches the flat topographic level of the bench as shown in Fig. 6.3. 

Beyond this point, the energy decreases and the landslide completely stop after 17 seconds. 

 

Table 6.2 Mechanical parameters used in the Tokai-Hokuriku Expressway landslide model 

 (kN/m³) 25.6 

Eu (kPa) 1000.0 

su (kPa) 54.5 

 0.33 

 0.6 

 

 

Fig. 6.2. Change of kinetic energy as a function of time in the Tokai-Hokuriku Expressway 

landslide. 
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Fig. 6.4 shows the final ground profile of the MPM simulation and the deposition lines 

obtained with constrained interpolated profile (CIP) method and the field observation in 

Sawada et al. (2004). We can observe that the simulation results are in good agreement with 

the field measurements. Furthermore, our results are compatible with the numerical 

simulation by Sawada et al. (2004) who predicts a debris flow stopping within 20 seconds 

while our MPM simulation stops at 17 seconds. 

The results of the numerical simulation using the MPM and the field measurement, both 

indicated in Fig. 6.4, show debris material being deposited along the failure surface. This 

same phenomenon can be observed in Fig. 6.5 with the real case at the indicated position. 

Therefore, the MPM also qualitatively matches the real landslide. 

 

Fig. 6.3. Evolution of the surface configuration and kinetic energy released during the 

Tokai-Hokuriku Expressway landslide. 
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Fig. 6.4. The final surface configuration of the Tokai-Hokuriku Expressway landslide. The 

thick yellow arrows indicate a zone of debris accumulation along the failure surface. 

 

Fig. 6.5. Panoramic view of the Tokai-Hokuriku Expressway slope failure. Modified from 

Ye (2004). The thick yellow arrows indicate an observed zone of debris accumulation 

modelled in Fig. 6.4. 
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6.2 VAJONT LANDSLIDE 

The Vajont landslide took place in the Italian Alps to the north of Venice. It occurred on the 9 

October 1963. Triggered by the rise of the water reservoir level, a mass between 270-300 

million m³ collapsed into the reservoir. As a consequence, a water wave was generated and 

overtopped the 262 m high arch dam claiming the lives of approximately 2,000 people 

downstream. Fig. 6.6 shows the general perspective of the site after the landslide.  

 

Fig. 6.6. Panoramic view of the Vajont landslide. (a) Landslide crown and analysed cross-

section (b) Concrete arch dam. Modified from Barla and Paronuzzi (2013). 

The exact failure mechanism of the landslide remains controversial, and numerous field 

and numerical studies have been completed. The geological setting of the Vajont landslide is 

described in Muller-Salzburg (1987), Paronuzzi & Bolla (2012) and Bistacchi et al. (2013), 

whereas Wolter et al. (2014) performed a detailed morphologic characterization of the slide 

using terrestrial photogrammetry. Among the different mechanisms discussed, an increasing 

pore pressure within a weak clay layer of a paleo-landslide re-activating the rock mass is well 

regarded (Ward & Day, 2011). 

Kilburn & Petley (2003) relate the collapse to a brittle behaviour of the clay layer due to an 

abrupt drop in resisting stress, and other authors state that the vaporization of ground water 

led to high pore pressures (Voight & Faust, 1982). Muller-Salzburg (1987) made a 

compendium of numerous back-calculation models based on the limit equilibrium of sliding 
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masses; and more recent studies of the failure mechanism are based on advanced numerical 

methods describing the kinematics at the beginning of the landslide (Wolter et al., 2013). 

The cross-section marked in Fig. 6.6(a) as 1-1‘, near the west side of the landslides is 

adopted in this study. The numerical model is illustrated in Fig. 6.8 and is a simplification of a 

digital elevation model by Bistacchi et al. (2013) and includes the geological conditions at the 

site, see (Paronuzzi & Bolla, 2012). Furthermore, Fig. 6.8 shows the water level at the 

moment of the landslide (700 m). Note however that the water level in the reservoir is not 

considered in the simulation presented here. 

 

Fig. 6.7. Geological section adopted in this research for the Vajont landslide before 9 

October 1963. Taken from Paronuzzi & Bolla (2012). 
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Fig. 6.8. MPM numerical model of the 1-1‘ cross section in the Vajont landslide. See Fig. 

6.6 (a) for cross section location. 

In Fig. 6.8, the rigid body indicated in blue does not take part of the simulation and serves 

merely to define a surface where the frictional interaction between the sliding clay and the 

rock mass happen. A structured square mesh with four points per cell is adopted. The main 

characteristics of the geometric model are summarized in Table 6.3. 

Table 6.3 Geometric model details in MPM simulation of Vajont landslide 

Cell size: 
10.0 m 

Material point size: 5.0 m 

Material points per cell: 4 

Material points representing the failed rock: 5623 

Material points representing the clay-rich zone: 3355 

Material points representing the rigid body: 28260 

Background mesh vertices: 17800 

 

An elastic-perfectly plastic constitutive model with the von Mises failure criterion is 

adopted. The material properties are estimated with basis on the data from Kilburn & Petley 

(2003) and Wolter et al. (2013). Also, an initial estimate of the frictional coefficient is made 

by means of equation (5.1) resulting in µ=0.18. The numeric values are given in Table 6.4. 

Finally, a time step t=3.0 ms was adopted. 
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The results for the kinematic energy are given in Fig. 6.9 where it is possible to observe 

that the energy initially behaves in a uniform manner followed by an increase and gradual 

decrease. The analysis of this behaviour can be accomplished by also observing the particles 

movement indicated in Fig. 6.10. For example, after 8 seconds, the first clay particles of the 

sliding material reach the opposite slope of the valley; however, the kinetic energy is still 

increasing and only after 14 seconds it reaches a peak with an average value of 16315 J (mean 

speed of 25.7 m/s). After that, the large failed rock mass starts to move to the opposite side of 

the valley; the speed decreases, and the movement gradually stops after 32 seconds. 

According to Ward & Day (2011), the seismic and eye witnesses‘ records indicate that the 

landslide had a duration of less than 45 s which is close to the value obtained by our 

simulations. Other numerical results produce values between 17-50 s (Ward & Day, 2011; 

Vacondio et al., 2013; Crosta et al., 2015). As mentioned before, the mean maximum velocity 

simulated is 25.7 m/s which also compares very well to the empirical estimate of 25 m/s made 

by Muller-Salzburg (1987) and is in the range of 8-50 m/s obtained by other numerical studies 

(Ward & Day, 2011; Vacondio et al., 2013; Crosta et al., 2015). 

 

Fig. 6.9. Change of kinetic energy on the failed rock strata as a function of time in Vajont 

landslide. 

25.7 m/s 
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Table 6.4 Mechanical parameters used in the Vajont, landslide model. 

Failed rock 

 (kN/m³) 26.9 

Eu (kPa) 1000.0 

su (kPa) 1000.0 

 0.25 

Clay rich layer 

 (kN/m³) 25.6 

Eu (kPa) 600.0 

su (kPa) 450.0 

 0.33 

Rigid base/Clay layer  1 0.1 

Clay layer/Failed rock  2 0.2 

Rigid base/Failed rock  3 0.2 

 

The final configuration of the failed mass is shown in Fig. 6.11. The solid black line shows 

the measured profile obtained from a digital elevation model by Bistacchi et al. (2013). The 

similarities with the numerical simulation can be clearly noted. Some differences are due to 

the model assumptions and simplifications. The dotted line shows the results obtained by 

Ward and Day (2011) using the Tsunami-Ball Method (TBM) and the dashed line by 

Vacondio et al. (2013) using Smooth Particle Hydrodynamics (SPH). We note that these two 

previous results were obtained based on analyses of the west side of the landslide and not 

exactly at the same cross section being investigated in this chapter. 

With regards to the frictional coefficient, the equation (5.1) has been employed in order to 

estimate a numerical value resulting in µ= 0.1-0.2 (6°-10°). On the other hand, Muller-

Salzburg (1987) made a compilation of numerous back-calculation models and estimates of 

the landslide based on limit equilibrium of sliding masses and geology data resulting in a 

wide variation of the friction angle with values between 9° and 28°. Further analyses based in 

the local geology for friction angles for highly plastic clays and clayey infillings suggest 

values from 5.6° to 7.4°. Wolter et al., (2013) used a series of two-dimensional and 

tridimensional numerical techniques to obtain a critical friction angle of 18° approximately. 

Above this value, the slope should be stable. 
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Fig. 6.10. Evolution of the surface configuration and kinetic energy released during the 

Vajont landslide. 
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Fig. 6.11. Vajont final surface configuration. 

A few final remarks are given to close this case study. In the simulation presented of the 

Vajont landslide, geological and geomorphological features must be known in order to allow 

a precise representation of the underground material layers and boundary conditions. The 

geological conditions and materials involved are fundamental to adopt a constitutive law. 

Despite the frictional law being a common and relatively well-known parameter in solid 

mechanics, a priori estimation of the correct value for landslides is very challenging. For 

instance, it depends on the type of the landslide, sliding mechanisms, materials involved and 

topographic constraints.  

An important step in the process of numerical modelling is the definition of the region to 

be simulated. This can raise questions regarding the mesh size needed to capture the analysed 

mechanical behaviour. Coarser meshes yield a crude approximation, and very fine ones can 

make the solution computationally unfeasible. To help on this task, Fig. 6.12 was built during 

this research to shows the relationship between the model heights for different cases of slope-

related problems using the MPM as found in the literature. In summary, the nearly linear 

relationship between material point (MP) size and model height in the figure can guide the 

mesh size definition, highlighting that material point sizes below the dashed line can lead to 

good results. The advantages of Fig. 6.12 relies on the possibility of selecting a suitable mesh 

size depending on the scale of the model. Moreover, it is advised that according to the 

literature review; mesh sizes below the dashed line provide good results in terms of accuracy. 

1970 m

8
5

0
 m

Digital Elevation Model, Bistacchi et al. (2013)

SPH, Vacondio et al. (2013)

Tsunami Ball Method, Ward and Day (2011)
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Fig. 6.12. Relationship between material point size and model height for slope stability 

problems. 

6.3 RISK APPLICATION EXAMPLE: ALTO VERDE 

Alto Verde landslide took place in the south-eastern region of Medellin City in November 

2008. The landslide run-out stroke Alto Verde residential complex which was composed by 

16 houses built along a central road. The tragedy happened during a heavy rainfall season. A 

precipitation of 110 mm of rain was measured by local authorities in the fortnight previous to 

the tragedy. It was described as the most intense rainy period over sixty years (AMVA, 2008). 

Among the causes of the landslide cited in the technical report by AMVA (2008) were cited; 

(i) the increased groundwater level in the slope; (ii) water infiltration caused by the overflow 

of a treatment water tank located near the crown of the landslide; (iii) inadequate practices 

during slope excavation in terms of geometry characteristics and, (iv) anthropic intervention 

in the top of the slope. 
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Fig. 6.13 shows a historical comparison of the residential complex at Alto Verde. The left-

hand side shows in red the affected area and localization of House 1 as reference six months 

prior the landslide. The right-hand side shows the situation in 2011, after the earthworks 

executed to stabilize the slope. Fig. 6.13 also shows the cross-section A‘-A which will be 

analysed later. The comparison between the two images gives a clear idea of the landslide size 

and its relationship with surrounding structures. In the left-hand side of Fig. 6.14 it can be 

seen a panoramic picture the day of the landslide. In contrast, the right-hand side shows the 

situation two years later, and after the stabilization works were performed. 

 

Fig. 6.13. Satellital images adapted from Google Earth (Llano-Serna et al., 2015). 

The slope was originally excavated in the rear of the residential complex with varying heights 

reaching up to 18 m. It is noted that the conditions that led to the landslide correspond to the 

slope with maximum height and 60° inclination (AMVA, 2008; Gómez & Giraldo, 2008). 

The soil profile in the area is composed of a 2 m thick layer of weathered volcanic ash 

overlying a layer of residual Dunite soil (potentially failed, reason why it is called Dunite 

Breccia) of 15 m thick. The bedrock underlying the layer sequence is composed of Breccia 

rock. The landslide affected the horizons composed by the weathered volcanic ash and the 

residual Dunite soil. Thus a superficial failure surface was observed. Fig. 6.15 shows 

evidences of a rotational slide. 

May 2008 January 2011
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crown
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House 1 
House 1
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Fig. 6.14. Panoramic picture. The left-hand side picture shows the situation the day of the 

landslide. Right-hand side three years later (Llano-Serna et al., 2015). 

 

Fig. 6.15. Close-up picture of the landslide crown (Llano-Serna et al., 2015). 

According to the technical reports by AMVA (2008) and Gómez & Giraldo (2008) the 

water table was located at 14 m depth near the landslide crown and 7 m in the depositional 

area. The information described therein is summarized in Fig. 6.16 
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Fig. 6.16. Soil profile and general characteristics at A‘-A cross-section (Llano-Serna et al., 

2015). 

Using the cross-section from Fig. 6.16 a numerical model was built. The model considered 

a series of simplifications seeking to reduce the computational time to reasonable values. In 

the first place, the two-dimensional representation in plane strains of a real three-dimensional 

problem. The second and most relevant simplification is based on the fact that, as mentioned 

before, this work focuses on the reproduction of the run-out process not in the triggering 

mechanisms of the failure. A similar approach was used by Sawada et al. (2004). The 

triggering mechanisms and causes were defined by Gómez & Giraldo (2008) using 

conventional limit equilibrium techniques and topographic observations before and after the 

slide. 

Fig. 6.17 shows the numerical model used here. The blue layer considers the part of the 

slope that did not fail during the landslide acting as a rigid body; whereas the green area 

represents the sliding mass which flowed down the slope. The last geometric simplification 

relates to the houses superstructure. On one hand, the depth of the foundations was assumed 

arbitrarily. This is not expected to be a big problem since a shear failure is expected (and 

observed in the field for the first line of houses reached by the landslide); it means the 

foundation length has no effect on the problem. On the other hand, the superstructure was also 

simplified considering that this work is focused on the mass progression from a geotechnical 

point of view. The mesh discretization was defined using Fig. 6.12. Other mesh 

characteristics are described in Table 6.5. 
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Fig. 6.17. MPM model adopted for Alto Verde landslide (Llano-Serna et al., 2015). 

The material properties adopted considered the results shown by Gómez & Giraldo (2008). 

They are summarized in Table 6.6.  

Table 6.5. Discretisation details in the MPM model 

Cell size (m) 
0.6 

Materil point size (m) 0.3 

Cell type Square 

Material points per cell 4 

Material point representing the rigid body 68627 

Material point representing the sliding body 5232 

Material point representing the houses structures 218 

Number of nodes in the background grid 45824 

 

Table 6.6. Mechanical parameters adopted in Alto Verde 

 

 

House

House

214 m

7
3
 mRigid body

Sliding area

Failure surface

Computational mesh

Parameter 
Sliding mass House structure 

 (kN/m³) 15.0 16.0 

Eu (MPa) 271.0 2000.0 

su (kPa) 7.2 - 

y (MPa) - 25.0 



 

68 

The coefficient of friction between the rigid body and the sliding mass was calculated 

using the expression proposed by Davies (1982) using the information provided by Gómez & 

Giraldo (2008). 

 max

max

H

L
   (5.2) 

The equation (5.2) is a modification of the relationship proposed by Hsü (1975) in equation 

(5.1), where Hmax and Lmax stand for the vertical and horizontal distance between the crow and 

toe of the landslide. The remaining coefficients of friction were arbitrary assumed and are 

summarized in Table 6.7. For example, the high coefficient of friction between the rigid body 

and the house structure was set very high to avoid a pull-out failure instead of a shear failure 

as observed in the field. 

Table 6.7. Coefficients of friction 

Materials 
µ 

Rigid body / Sliding mass 0.4 

Rigid body / House structure 4.0 

Sliding mass / House structure 0 

 

The simulation was carried out by increasing gravity up to g=9.8 m/s
2
. The model includes 

the first 60 s of the landslide progression in which it is possible to calculate the kinetic energy 

as shown in Fig. 6.18. It is possible to observe that the most critical moment took place at t=4 

s when the kinetic energy reached a peak, followed by a similarly fast decrease. In Fig. 6.18 

and Fig. 6.19 can be seen that the energy peak was reached when the landslide mass 

overtopped the first line of houses and hit the wall from the second line of houses in the lower 

topographic level. Both structures act as a barrier decreasing the energy of the mass. 

However, it can be seen how at t=10 s, the first line of houses collapsed completely. A similar 

behaviour was observed for the second line of houses at t=25 s. 

The maximum mean kinetic energy was estimated as 5 J approximately, which 

corresponds to a velocity of 8.5 m/s. Fig. 6.19 also shows different time lapses including the 

local energy peaks at t=25 s and t=40 s corresponding just to local acceleration produced by 

the topography. 

The last stage of Fig. 6.19 was overlapped with descriptions given in the literature 

(AMVA, 2008; Gómez & Giraldo, 2008); it is insightful to mention that the depositional areas 
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match both the descriptions and observations from Fig. 6.14. For example, the location of the 

debris from the first line of houses was the road located is described by Gómez & Giraldo, 

(2008) and observed in Fig. 6.19; the shear failure of the houses located in the lower 

topographic level also compares well the numerical results; the distance from the landslide 

crown to the toe (170 m) was also successfully described. However, the technical reports 

mention that the ground level of the houses located in the upper topographic level did not 

collapse. This characteristic was not observed in the numerical simulation. This fact is not 

considered to be very problematic because the structural model disregards much of the 

architectural features of the structures. 

 

 

Fig. 6.18. Change of kinetic energy as a function of time in Alto Verde landslide (Llano-

Serna et al., 2015). 

8.5 m/s
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Fig. 6.19. Alto Verde landslide progression with the time (Llano-Serna et al., 2015). 

t= 0 s

t= 4 s

t= 10 s

t= 25 s

t= 40 s

t= 60 s

Main
depositional 

area

Original
slope

Uncollapsed
ground level 

structure

Debris from the first house 
located 10 m downstream

2nd line of houses 
completely sheared of 
the foundation 

170 m from the crown to the toe 



 

71 

All structures struck by the landslide suffered a complete loss of service, but a guardhouse 

only suffered partial damage, as shown in Fig. 6.20.  

 

Fig. 6.20. Alto Verde residential complex guardhouse (Llano-Serna et al., 2015). 

According to the glossary of the international society of soil mechanics and geotechnical 

engineering (Davis, 2008), vulnerability is the degree of loss for a given element or set of 

elements within an endangered area because of potential landslides. The vulnerability is 

usually expressed on a scale ranging from 0 (no loss) to 1 (total loss). 

The expected economic loss may be expressed as the cost of damage to the total value of 

property. Usually, the vulnerability of structures and people threatened by landslides is given 

from a qualitative point of view; highly subjective and often based solely on historical records 

(Dai et al., 2002). Recent works have proposed theoretical frameworks for quantitative 

assessment of the physical vulnerability of structures depending on the intensity of a landslide 

and the structural conditions of the buildings threatened (Kaynia et al., 2008; Uzielli et al., 

2008, 2015; Li et al., 2010). Here is adopted the model proposed by Li et al. (2010), where the 

vulnerability is quantified based on the application of the following expression: 
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where I is the intensity of the landslide, and R stands for the resistance of the element at risk. 

The parameter I can be expressed in a different way by either one of the combinations of 

speed, energy, volume, and thickness of the debris flow. According to Li et al. (2010), for 

structures impacted by a landslide the intensity can be determined in terms of the dynamic 

intensity that depends on the flow velocity and debris depth according to: 

 
dyn dptI I I    (5.4) 
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 0.1dpt dptI D    (5.6) 

where Idyn is a dynamic intensity factor; Idpt is the debris-depth factor; C is the mean debris 

velocity, and Ddpt is the debris depth where it hits the structure. The same authors established 

that the physical resistance (Rstr) could be quantified as follows: 
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where sfd , sty, smn, and sht are resistance factors of foundation depth, structure type 

maintenance state, and height, respectively. Reference values for these factors are reported by 

Li et al. (2010); see their Table 2-5. Based on field observations these parameters were set as 

sty=1.3 smn= 1.5, and sht =0.9. Thus, the structure vulnerability will depend only on the 

debris depth for different velocities. Using the maximum mean estimate from the MPM 

simulation (8.5 m/s), Fig. 6.21 was plotted. Additional velocity values were also considered as 

a parametric exercise. From Fig. 6.19 it was also possible to measure 4 m as the mean 

maximum debris depth along the cross section. The corresponding point ―A‖ was plotted in 

Fig. 6.19 which represents the vulnerability of the houses destroyed by the landslide before 

the event. It is worth of mentioning that vulnerability equals to one stands for the total loss of 

the property as observed. 
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On the other hand, estimates performed for the guardhouse in Fig. 6.20 indicate a 

vulnerability value of around 0.2. This is reasonable assuming that the velocity in the flanks 

of the landslide was about a tenth of the velocity in the main path. Note also that the debris 

depth was about 1.5 m in Fig. 6.20. Point ―B‖ in Fig. 6.21 which indicates a serviceability 

loss of around 20% as seen from field observations (see Fig. 6.20). 

 

Fig. 6.21. Relationship between the structure vulnerability and the debris depth for 

different run-out velocities (Llano-Serna et al., 2015). 

Ragozin & Tikhvinsky (2000) performed a vulnerability analysis of people inside 

buildings threatened by landslides. Fig. 6.22 shows the probability of a person being injured 

by different degrees depending on the structural vulnerability of the building. According to 

Ragozin & Tikhvinsky (2000), when a physical vulnerability above 0.8 is expected, more than 

60% of fatalities and serious injures may be experienced. This also matches Alto Verde 

tragedy, where 12 people lost their lives. Fig. 6.22 also shows a cut-off limit of 0.8 for a 

structural vulnerability in which the structural vulnerability should be intolerable. 

In Alto Verde case study, the structures that suffered the impact of debris flow with depths 

above 2.5 m (see shadings in Fig. 6.21) are considered to have an intolerable vulnerability 
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level. This was verified and validated for the six houses destroyed. Only those regions where 

the run-out velocity was very low (around 0.1 m/s or less) would indicate tolerable or 

manageable vulnerability levels for the debris depth calculated. Furthermore, only regions 

with velocities around 1 m/s as seen in the guardhouse would attain acceptable vulnerability 

levels with debris depth of around 1.5 m or less. 

 

Fig. 6.22. Probability of one person being injured of different degrees. Modified from 

Ragozin & Tikhvinsky (2000). 
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7. CONCLUSIONS 

A numerical and experimental effort has been performed in this thesis to demonstrate that 

large deformation problem such as observed in an indentation problems (e.g. fall cone test) or 

landslides subjected to fast load frames, may be solved using the Material Point Method 

(MPM). Despite the simplicity of the constitutive model used here; the validations and 

applications of the method encourage further research. Some specific and general conclusions 

are addressed as follows. 

7.1 EXPERIMENTAL TESTING 

The experimental results of laboratory tests performed in this thesis were used to explore the 

calibration of the fall cone test and the determination of the K factor. It was demonstrated that 

ad hoc assumptions for this fundamental characteristic of the equipment might lead to 

unacceptable results. For example, one author arbitrarily assumed K=1.33, resulting in shear 

strength parameters 2.4 times higher than the correct values. Furthermore, the wide range of K 

factors reported in the literature for the 30° cone is mainly caused by the lack of a unified 

framework for the calibration procedure and misinterpretations of the fall cone theory. 

The scatter in the K factors obtained herein for different cones is noted; nevertheless, the 

proposed method is also able to give a physical meaning to roughness differences or particular 

procedures, i.e., the application of oil on the cone surface. Therefore, the calibration 

procedure and the method using iteration for finding critical state parameters from the fall 

cone test can readily be applied. The resulting methodology may complement a laboratory test 

program and reduce costs. 

To check the proposed procedure, remoulded kaolin was selected as a benchmark soil, 

taking advantage of its commercial availability and the large existing database of tests 

employing this material. Cone penetration and undrained shear strength quantification using 

the mini-vane shear tests were also performed to further assess the quality of the proposed 

calibration method. Samples with different moisture contents were used to demonstrate the 

method. 

It was shown that the calibration results are in reasonable agreement with the data from 

different authors and match fairly well other theoretical and numerical investigations. Results 

from oedometer and conventional triaxial compression tests illustrate that the proposed 

process can evaluate some critical state parameters regarding deformability and undrained 

shear strength for remoulded fine-grained soils. However, its application is still limited to 
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remoulded unconsolidated clayey soils. The application of the methodology for different 

conditions is discouraged by the author 

7.2 NUMERICAL RESULTS 

The objective of the numerical analyses was to verify the feasibility of the Material Point 

Method (MPM) to simulate the penetration of a free falling cone into a layer of soft saturated 

clay, besides several hypothetical and real landslide problems.  

The results are quite satisfactory, as shown by the comparison with experimental data 

using the laboratory fall cone test. Additionally, samples of saturated kaolin were also tested 

using the laboratory vane shear test under different conditions to obtain values of the 

undrained shear strength. 

The experimental curves of cone penetration versus shear strength were back-analysed 

using a penetration model proposed by Hansbo (1957). The author concludes that this simple 

model was valid for the experimental results, with a very high correlation, and that the cone 

factor was equal to K=0.5, which is characteristic of a rough surface. 

The numerical simulations were able to capture the main features of the problem under 

investigation. The cone factor obtained from the numerical simulations matched the value 

obtained experimentally. Further analyses comparing the evolution of penetration with time 

also matched closely experimental results obtained from the literature. Finally, the numerical 

results compared well with available theoretical solutions. 

The NairnMPM program used for the numerical simulations proved to be a convenient tool 

to tackle these kinds of large deformation and penetration problems. However, improvements 

can still be made, especially concerning the contact models, which should include both 

friction and adhesion for more general applications of interest in geotechnical engineering. 

The material point method (MPM) was a good alternative, with better predictive 

capabilities at times than conventional methods for the simulation of landslides run-out. 

However, is also less efficient to solve small strain problems when compared with the FEM. 

The MPM allows for modelling large deformations in landslides under the perspective of 

continuum solid mechanics. Therefore, standard soil/rock mechanics‘ testing and theory can 

be employed to define modelled material properties. 

An objective of this research was to model the run-out process and to compute the kinetic 

energy at different scales (laboratory and field scales). The results demonstrated that this 

objective could be achieved with the MPM. For instance, both laboratory and field 

observations were in good agreement with the MPM simulations. Moreover, the MPM 
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simulations compared quite well to many other numerical studies related to the simulation of 

landslides. 

The risk assessment example was a clear application of bridging the gap existing in the 

available literature, where the physical vulnerability of elements threatened by landslides can 

be successfully quantified. This methodology describes a step forward in risk assessment for 

slopes with a high probability of failure. 

7.3 OUTLOOK FOR FURTHER RESEARCHES 

The outcome described above highlights the applicability of the proposed methodologies used 

in this thesis. However, it is still needed a unified framework for laboratory testing and 

modelling based purely on large deformations. For this goal we suggest: 

 A brittle constitutive model for soils is needed to address the transition between the 

pre-failure and post-failure state. The results presented herein were focused on the 

residual mechanical behaviour of geomaterials. For example, a laboratory test 

campaign using the ring shear test or the vane shear test at different stress rates may 

be the first step to address this limitation. 

 Large strain problems are usually related to contact mechanics. The frictional 

model used here implies some limitations that can be tackled if a more 

comprehensive model is adopted. However, this is not a simple task. For example, 

the multi-material routine usually adopted in MPM would need an algorithm to 

approximate the contact area to adopt a cohesive model. 

 The methodology described in this thesis may be further applied to design energy 

dissipation structures that to help in control of avalanches, debris flows and 

generally to assess the behaviour of structures interacting with landslides. 
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9. APPENDIX A 
%iterative procedure that allows the determination of the critical state 
%line position and critical strength parameter M 
format long 
%input  
a=31.9978922907275;       %Variable related to water absorption 
b=0.143865212512386;      %Variable related to soil compressibility 
Gs=2.60922;               %Specific gravity of the solids 
alpha=sqrt(3);            %may be sqrt(2) for CTC conditions 
%void ratio = D[:,1]; undrained shear strength = D[:,2] in kPa 
% D= [1.03877871157357 22.5001276790356; 1.09662126678965 15.8606710988471;  
%     1.18001386352084 7.54581224595128; 1.33212838540653 4.88964335533517;  
%     1.44041822297129 2.80882514731598; 1.56923005441061 1.49668944187829;  
%     1.58846481714104 0.842745906991324]; 
% %end input 
omega=[0.25 10342.1355];  %Omega point, may be used to initial ea 
pa=101.325;               %Atmospheric pressure[kPa] 
l=length(D);              %Determine number of points on the input 
%Eq (9) used in step 3 of the iterative process 
eai=omega(1,1)+b*log(omega(1,2)/pa); %initial reference void ratio 
                                     %can be changed to improve convergence  
%Equation (9) used in step 5 of the iterative process 
%Additional columns calculated for D are: 
%D[:,3] = initial mean effective stress in kPa 
%D[:,4] = initial deviatoric stress in kPa 
for i=1:l; 
    D(i,3)=pa*exp((eai-D(i,1))/b); 
end 
D(:,4)=D(:,2)*alpha; 
%results for each step is stored in matrix R 
%R[:,1] = iteration 
%R[:,2] = ea 
%R[:,3] = M 
%R[:,4] = phi 
%First iteration 
R(1,1)=1;                         %index 
R(1,2)=eai;                       %ea initial guess                     
R(1,3)=D(:,3)\D(:,4);             %M computation 
R(1,4)=radtodeg(asin(3*R(1,3)/(6+R(1,3)))); %step 6, phi computation 
R(1,5)=1;                         %initial error=1 
R(2,2)=0.01*a*Gs*(alpha/R(1,3))^b;%step 8 in iterative process  
                                  %referred to next ea computation 
                                  %by means of Eq (16) 

                                   
%Step 9 of the iterative process, the procedure is repeated until 
%error<0.01% 
k=2; 
while R(k-1,5)>=0.01; 
      R(k,1)=k;                             %iteration index 
      for i=1:l;                            %new p value in kPa 
        D(i,5)=pa*exp((R(k,2)-D(i,1))/b); %D[:,5] = final p in kPa 
      end 
      R(k,3)=D(:,5)\D(:,4);                            %M 
      R(k,4)=radtodeg(asin(3*R(k,3)/(6+R(k,3))));      %phi 
      R(k+1,2)=0.01*a*Gs*(alpha/R(k,3))^b;             %ea 
      R(k,5)=abs(100*((R(k,3)-R(k-1,3)))/R(k-1,3));    %error 
      k=k+1; 
end 

 


