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I. INTRODUCTION

! HE STUDY OF the constant-speed asymmetrical op-
eration of an unsaturated synchronous machine is of
great importance. It always leads to a linear differential
equation with periodic time-dependent coefficients. Very
little is known about such mathematical problems, except
for a theorem due to Floquet [1]-[3], which proves the
existence of a transformation leading to the complete
solution but does not give any general way to find that
transformation. However, in some particular cases [5], [6],
it has been possible to find that transformation. Note that
we have discarded the Carson method [8], [9], which we
have found too complicated because it introduces many
timé constants which are not relevant to the problem.

The method employed has a relatively general signifi-
cance, and may be used in any case of linear periodic
coefficient equations but it involves very tedious algebraic
manipulations. Therefore, it has been necessary to address
the problem anew, with matrix notations, to arrive at more
general approaches to the determination of the Floquet
reference frame.

The problem which is tackled here is the sudden single-
phase short circuit of an unloaded damped nonsalient
alternator. The use of matrix notation will be shown to
lead to a solution much more straightforward then in [5] or

[6].

II. PROBLEM DESCRIPTION

The alternator consists of six windings, only four of
which are considered here. There is one winding (/) on the
rotor, called the field winding, which is assumed to be
connected, through sliding contacts, to a nonimpedant dc
source. Two damper windings are located on the rotor; the
so-called quadrature axis damper (kq) has no mutual
inductance with the field winding, while the direct axis
damper (kd) has a mutual inductance with the field wind-
ing, but not with the quadrature damper. Three armature
windings are located on the stator, but only one, called
(a), which will be suddenly short-circuited at time 0, is to
be considered here (Fig. 1). While resistances and self-
inductances are constant, due to air gap uniformity, the
mutual inductance between a and rotor windings varies
periodically with rotor-stator displacement. In machines
of practical interest, these variations are sinusoidal.
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where d#/dt = w is the rotor speed, and 8§ =wt— ¥ if
uniform speed is considered.

When the problem is stated in these terms, saturation

cannot ‘be taken into account. However, experience shows
that in most practical machines, the results obtained with

Fig. 1. Definition of the single-phase short circuit of an alternator.

this restriction may be of considerable interest; for exam-
ple, the three-phase symmetrical case is almost always
analyzed in linear conditions.

II1. FLOQUET’S THEOREM AND APPLICATION

The solution of (1) may be divided into two parts.

Floquet’s theorem is indirectly used to solve the homo-
geneous differential equation with periodic time-dependent
coefficients. Let X be the solution of the homogeneous
equation; then

d
—X=MX. ()

Let ‘M, be a square matrix whose coefficients are periodic,
with the same period as the coefficients of M;:
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- or, more compactly,
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where

F(8)= Y Iexp(jnd) (5)

for h=1, 2, 3, and 4.
M, may be either real or complex. The change of
variables

X=M;X (6)
yields
d _ —
XM X. (7

Floquet’s theorem states that there exists a matrix M,
such that M, be constant. In addition, if all eigenvalues of
M; are distinct, then it is possible to modify M, in such a
way as to diagonalize M;:

-
—a,

M, = (®)

—a,
- ay,

In what follows, we shall assume that this is so although
it is not strictly impossible that two time constants of a

synchronous machine are equal. Indeed, the probability of
such an event is practically zero under any circumstance
we have ever heard of.

As already stated, no general method to determine M, is
available. However, the important point is that Floquet’s
theorem shows that the solution of (2) can be written as

X= hglxgexp(— a,-1)-F,(8) )

where the K,’s are constant.

As another consequence of Floquet’s theorem, one solu-
tion of the inhomogeneous equation is a vector Fy(6),
which can be expanded in a Fourier series:

F(0)= Y Toexp(jnf). (10)

n= —o00
Thus, as

I=X+FE,(0) (11)

the solution of (1) can be written

I= % Kyexp(—ay1)-Fy(6) (12)
h=0 .

where a;, =0 and K,=1.

Our method can be described as follows.

1) Substitute (12) into (1). ~

2) Establish recurrent relation between the vectors I,,’s.

3) Realize that those relationships are generally not
convergent; the definition of convergence provides, in fact,
the equation to determine the a,’s in (8).

4) Use the values of « and the recurrence relations to
find the vectors F,(#), called Floquet’s reference frame.

5) Use four initial conditions to determine completely
the currents.

IV. THE RECURRENT RELATION

Let us introduce (12) into (1), and then let us cancel the
groups of terms which are multiplied by the same
exp(— a, -t + jnf); since it is possible to treat indepen-
dently the different values of h, we shall omit the index A
from here to the end of the next section. This yields

AL +BI +C1I,_,=0 (13)
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The 8’s are the reciprocals of the time constants of the
four circuits, and the o’s are the dispersion coefficients
between every possible pair of windings.



V. DETERMINATION OF a AND M,

If a value of a were known, knowledge of any two
successives vectors I, and I, ; would permit knowledge
of all vectors I, for — oo <n < o0; since (5) must be a true
Fourier expansion, I, should go to zero when n goes to
plus or minus infinity. Therefore, the fundamental prop-
erty of the a’s in (13) is to render (5) convergent for both
infinite positive and infinite negative values of n. Ex-
pressing this condition will give an equation to determine
the a’s without knowing the change of variables M,. We
shall develop this concept.

Let us consider first # > 0, and let

I_n+1=Pn+1'I_n- (14)
Substituting this definition into (13) yields
{4-P,.\'P,+B P, +C}I,_,=0 (15)
and since I, must be nonzero,
P,=~{4-P,, +B)7"C. (16)
The limit value P, fulfills
P,=-{A-P +B_ )" 'C (17)

an equation which is easily solved by successive approxi-
mations if one begins with P_ =0 as a first guess.
Similarly, for n < 0, let

I, \=N,I, - (18)
which implies from (13)
N,=-{C:N,_,+B,} "4 (19)
And N__ is determined in a manner similar to P
For n=0, eq. (13) yields (if 1 # 0)
{A-P,+By+C-N_,}-I,=0 (20)

and since fo must be nonzero, this implies, first, that
det{A4-P,+B,+C-N_;} =0 (21)
and, second, that I, must lie along a well-defined direc-

tion. Thus, a can be called an eigenvalue and I, an
eigenvector of the problem.

Practically, we choose a value J of n such that N _; and
P, are “close enough” to N__ and P_. Then, we choose a
first guess aV for a; thus, we are able to evaluate first
guesses of N_, and P, which may be written N_,(a®,J)
and Py(aD,J). J is “large enough” if N_; and P,
practically do not vary if J is change for J+1 or J—1.

Then, a second guess a® will be found from (21) as

det{A.Pl(a(l),j)+BO(a(2))+C-N_1(a(1),J)} =0.
' (22)

In all the case which we have studied, repeating this
process leads to a very fast convergence.

The problem of finding a first guess is solved by assum-
ing that P, and N_, are equal to, respectively, P, and
N__,, that is, by solving

det{A4-P,+ By(a®)+C-N__} =0. (23)
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Therefore, it is possible to compute the four eigenvalues «;,
(h=1,2,3,4), and to evaluate the corresponding eigenvec-
tors 1,.

Once the a,’s are calculated, all the matrices P,, and
N, are defined by (16) and (19). The directions of all the
vectors I, are given by (14) and (18). Then we find the
directions of the four vectors F,(#) which are the columns
of the matrix M,. Since the F,(8)’s are, in fact, the axis of
the new reference frame which transforms the system of
differential equations with periodic coefficients (2) into
another system with constant coefficients (7), it can be said
that Floquet’s reference frame is completely determined.

VI

To compute the currents, we first have to find the
particular solution (10). This is done by substituting (10)
into (1) for n = 0. From that we find

0
7= E/OR,
0

with the same recurrent relation, and with a =0, we can
now find all the other vectors I, and the solution Fy(8).
Then, we have to evaluate four constants K, which are
dependent on four initial conditions.

If we define a vector K as K = (K, K,, K5, K,)T, we
can have (12) for t =0 as

K= {M,(¥)} - {1(0)- K (¥)).

VIL

~We have studied an alternator defined by the following
data:

0, =012 0,,=010 o, =015 g,,=0.06
8,=1.00 §=033 8,=010 &,=020.

EVALUATION OF CURRENTS

(24)

(25)

PRACTICAL APPLICATION

Using the above method, we have determined the values of
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Fig. 2. Variation of time constants with frequency.
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Fig. 3. Armature and field current variations: (a) ‘I,; , ¥=0°
®) f=1, ¥ =90° (c) f = 50, ¥ = 0°; (d) f =50, ¥ =90°.
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Fig. 4. The 16 periodic functions defining Floquet’s reference frame,

TABLE 1
MINIMUM VALUES OF J TO FULFILL VARIOUS CONDITIONS AT
0.1 Hz, 1.0 Hz, AnD 50.0 Hz

flz) | N | 13
0.1 6 8 | 16
1.0 2 8 | 18
50. 1 8 1 2

a, displayed in Fig. 2. Those values are real and practically
constant for f<0.1 Hz and f> 30 Hz; in the interval
0.18 < f < 2.8 Hz, two time constants are complex con-
jugate, and they are called p'+ jp”. Then, the short-circuit
currents have been computed for many values of the
frequency and of ¥, which is the initial value of 8. In each
case, we have compared the results with the results yielded
by a Runge-Kutta integration method. They tallied within
reasonable roundoff errors; typically, the relative error was
1073 for the peak values. Variations of i, and i g for f=1
Hz and ¥ = 0° and ¥ = 90° are given in Fig. 3(a) and (b);
for f =50 Hz, Fig. 3(c) and (d) corresponds, respectively,
to ¥ = 0° and ¥ = 90°. The matrix M,(#), which is called
Floquet’s reference frame, is then real; it is described by
the 16 curves in Fig. 4. The optimal value of J has been
numerically studied. For each value of f, there is a good
value of J, say J;, which ensures values of a’s within a
1073 relative error. However, to determine correctly the
currents, it is necessary to increase J from J;, to -J,.
Eventually, an attempt may be made to check the values of
M, M,, and M, as
M3=M‘;1{M1-M2—%M2}. (26)
This is not so unless J is again increased to a larger value
J5. Values of J;, J,, and J; for f=0.1 Hz, f =1.0 Hz, and
f =50.0 Hz are shown in Table I.
. The following remarks can be made about Table 1. First,
J, increases when f decreases because, for f=350 Hz,
matrices N_; and P, are practically equal to N__ and
P_, because a always appears in expressions a — jnw. This
is true for any other high value of frequency, but not for
small values of frequency. Then, the fact that J, is inde-
pendent of frequency means that the number of harmonics
does not depend on frequency. Eventually, J, increases
with frequency because of (26), where dM, /dt increases
with frequency, in such a way that accuracy seems to
decrease with frequency.

As for the convergence of iterations, it is rather fast. For
frequencies larger than 10 Hz, three iterations are enough
to solve (20), provided that the initial guesses are chosen as
explained above. For the lower frequencies (down to 0.1
Hz for an industrial machine), ten iterations may be neces-
sary, and it is necessary to study successively several values
of the frequency. For each value of frequency, the initial
guess is the result obtained for the previously studied
frequency.



VIII. REMARKS

For an actual machine, the values of the o’s must lie in
the interval (0,1). For the sake of curiosity, we have used
values outside this interval. The equation obtained in that
way no longer represented the behavior of an electrical
machine, but we have seen that the method still yields a
correct result. Therefore, the success of the method is not
limited to actual alternators, and it may be possible to
extend it to a general stability problem [10], [11].

IX. CONCLUSIONS

We have found the Floquet reference frame for the
single-phase short circuit of a uniform air gap synchronous
machine with dampers by formulating the problem in a
matrix form which is suitable for generalization.
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