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Abstract - Model order selection (MOS) schemes, which are frequently employed in 
several signal processing applications, are shown to be effective tools for the detection 
of malicious activities in honeypot data. In this paper, we extend previous results by 
proposing an efficient and parallel MOS method for blind automatic malicious activity 
detection in distributed honeypots. Our proposed scheme does not require any previous 
information on attacks or human intervention. We model network traffic data as signals 
and noise and then apply modified signal processing methods. However, differently from 
the previous centralized solutions, we propose that the data colected by each honeypot 
node be processed by nodes in a cluster (that may consist of the collection nodes 
themselves) and then grouped to obtain the final results. This is achieved by having each 
node locally compute the Eigenvalue Decomposition (EVD) to its own sample correlation 
matrix (obtained from the honeypot data) and transmit the resulting eigenvalues to a 
central node, where the global eigenvalues and final model order are computed. The 
model order computed from the global eigenvalues through RADOI represents the number 
of malicious activities detected in the analysed data. The feasibility of the proposed 
approach is demonstrated through simulation experiments. (6)

Keywords - Intrusion Detection, Honeypot, Model Order Selection, Principal Component 
Analysis.
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I. IntroductIon

The Problem. A honeypot system collects 
malicious traffic and general information on 
malicious activities directed towards the net-
work where it is located [2]. It serves both as 
data source for intrusion detection systems as 
well as a decoy for slowing down automated at-
tacks [3], [4]. Efficient algorithms for identifying 
malicious activities in honeypot data are par-
ticularly useful in network management statis-
tics generation, intelligent intrusion prevention 
systems and network administration in general 
as administrators can take actions to protect 
the network based on the results obtained [5]. 
Even though honeypots provide a reliable and 
representative source for identifying attacks 
and threats [6], they potentially produce huge 
volumes of complex traffic and activity logs 
making their efficient and automated analysis 
quite a challenge. The problem of processing 
such data is further aggravated in distributed 
settings, where data is collected from multiple 
nodes in multiple network portions.

Previous Works: Several methods have been 
proposed for identifying and characterizing 
malicious activities in honeypot traffic 
data based on a variety of approaches and 
techniques [7], [8], [9]. Classical methods 
typically employ data mining [8], [9] and text 
file parsing [7] for detecting patterns which 
indicate the presence of specific attacks in 
the analysed traffic and computing general 
statistical data on the collected traffic. These 
methods depend on previous knowledge of 
the attacks which are going to be identified 
and on the collection of significant quantities 
of logs in order to work properly.

Recently, machine learning techniques have 
also been applied to honeypot data analysis and 
attack detection [10] yielding interesting results 
as such techniques are able to identify malicious 
activities without relying on previously provided 
malicious traffic patterns and attack signatures. 
However, it is necessary to run several analysis 
cycles during a learning period in order to 

train the system to recognize certain attacks. 

Although such methods are efficient, they are  

computationally expensive. Furthermore, if the 

legitimate traffic patterns are altered by any 

natural causes, machine learning based methods 

may yield a significant number of false positives, 

identifying honest connections as malicious 

activities. These systems are also prone to 

failure in not detecting attacks which were not 

included in the learning process or whose traffic 

resembles honest patterns.

Principal component analysis (PCA) based 

methods [11], [12] came on to the scene as a 

promising alternative to traditional techniques. 

PCA based methods identify the main groups 

of highly correlated indicators (i.e. principal 

components) which represent outstanding 

malicious activities in network traffic data 

collected at honeypots. Such methods are 

based on the clever observation that attack 

traffic patterns are more correlated than 

regular network traffic. Since they solely rely on 

statistical analysis of the collected data, these 

methods need not to be provided with previous 

information on the attacks to be detected 

neither need to be trained to recognize attacks 

and separate them from legitimate traffic. This 

characteristic makes PCA based honeypot data 

analysis methods suitable for automatic attack 

detection and traffic analysis. However, current 

PCA based methods [11], [12] still require 

human intervention, rendering them impractical 

for automatic analysis and prone to errors such 

as false positives.

Our Contributions: We propose a method 

for automatically identifying attacks in low 

interaction honeypot network traffic data 

based on state-of-the-art model order selection 

schemes [13], [14]. Our method can also be 

implemented in cluster environments using 

parallel processing in order to achieve higher 

efficiency and scalability. In order to obtain this 

result we present the following contributions: 

•	 We propose to model network traffic as 

signals and noise data, interpreting high-
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ly correlated components as significant 

network activities (in this case, malicious 

activities).

•	 It is possible to identify malicious activi-

ties in honeypot network flow datasets 

without any previous information or at-

tack signatures by applying model order 

selection schemes.

•	 We adapt RADOI to successfully identify 

the main attacks contained in the simu-

lation data set, efficiently distinguishing 

outstanding malicious activities from 

noise such as backscatter and broadcast 

packets.

•	 A technique to distribute RADOI compu-

tation across a cluster of worker nodes 

that may consists of the honeypot nodes 

themselves, allowing for a significative in-

crease in efficiency and scalability of our 

malicious activity detection system.

While blind malicious detection schemes in 

the literature [12], [11] require human inspection 

to detect malicious activities. In this paper, 

we obtain a blind automatic detection method 

without the need of any human intervention 

by using model order selection schemes. More 

generally, our method is an intrusion detection 

system which does not require previous 

knowledge of attack signatures and might find 

interesting applications in contexts other than 

honeypot systems.

According to recent results [15], it is possible 

to obtain high efficiency in distributed network 

data colelction and processing in the MapReduce 

framework by having each node running a network 

sensor process its own collected data. Our results 

show that model order selection (specifically 

RADOI) can be applied in such scenario, where 

each honeypot node processes its collected 

data, which is subsequently aggregated in order 

to obtain final comprehensive detection results. 

Hence, our method is an efficient and scalable 

alternative for high traffic load distributed 

honeypot scenarios.

Roadmap. The remainder of this paper is 

organized as follows. In Section II, we define 

the notation used in this paper. In Section III, 

we formally introduce the concept of honeypots, 

discuss classical analysis methods and present 

an analysis of related work on PCA based 

methods for honeypot data analysis. In Section 

IV, we describe the dataset preprocessing 

method through which we transform the data 

before Model Order Selection (MOS). In Section 

V, we introduce classical MOS and also state-

of-the-art schemes and propose our analysis 

method based on RADOI. In Section VI, we 

evaluate several MOS schemes in experiments 

with real data, presenting experimental results 

which attest the validity of our approach. In 

Section VII, we finally conclude with a summary 

of our results and direction for future research..

II. notatIon

Throughout the paper scalars are denoted by 

italic letters , vectors by lower-

case bold-face letters (a, b) and matrices by 

bold-face capitals . Lower-order parts are 

consistently named: the (i, k)-element of the 

matrix  is denoted as . We denote by diag( )
the diagonal vector of a matrix . The element-

wise productorial of vectors is denoted by . 

Concatenation between two elements α and b is 

denote by α|b.

We use the superscripts T and -1 for transposi-

tion and matrix inversion, respectively.

III. related Works

In this section, we introduce the concept 

of honeypot systems and discuss the several 

methods used for obtain and analysing data 

in such systems. Special attention is given to 

methods based on principal component analysis, 

which are the focus of our results.

A honeypot is generally defined as an 

information system resource whose value lies in 
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unauthorized or illicit use of that resource [2], 
although various definitions exist for specific 
cases and applications. Honeypot systems are 
designed to attract the attention of malicious 
users in order to be actively targeted and 
probed by potential attackers, differently from 
intrusion detection systems (IDS) or firewalls, 
which protect the network against adversaries. 
Generally, network honeypot systems contain 
certain vulnerabilities and services which 
are commonly targeted by automated attack 
methods and malicious users, capturing data 
and logs regarding the attacks directed at them. 
Data collected at honeypot systems, such as 
traffic captures and operating system logs, is 
analyzed in order to gain information about 
attack techniques, general threat tendencies and 
exploits. It is assumed that traffic and activities 
directed at such systems are malicious, since they 
have no production value nor run any legitimate 
service accessed by regular users. Because of this 
characteristic (inherent to honeypot systems) the 
amount of data captured is significantly reduced 
in comparison to network IDSs which capture 
and analyze as much network traffic as possible.

Network honeypot systems are generally di-
vided into two categories depending on their lev-
el of interaction with potential attackers: Low and 
High interaction honeypots. Being the simplest of 
network honeypots, the Low Interaction variant 
simply emulates specific operating systems TCP/
IP protocol stacks and common network services, 
aiming at deceiving malicious users and auto-
mated attack tools [16]. Moreover, this type of 
honeypot has limited interaction with other hosts 
in the network, reducing the risks of compromis-
ing network security as a whole if an attacker 
successfully bypasses the isolation mechanisms 
implemented in the emulated services. High in-
teraction honeypots are increasingly complex, 
running real operating systems and full imple-
mentations of common services with which a ma-
licious user may fully interact inside sandboxes 
and isolation mechanisms in general. This type 
of honeypot captures more details concerning 
the malicious activities performed by an attacker, 

enabling analysis systems to exactly determine 
the vulnerabilities which were exploited, the at-
tack techniques utilized and the malicious code 
executed.

Depending on the type of honeypot system 
deployed and the specific network set up, 
honeypots prove effective for a series of 
applications. Since those systems concentrate 
and attract malicious traffic, they can be used 
as decoys for slowing down or completely 
rendering ineffective automated attacks, as 
network intrusion detection systems and as a 
data source for identifying emergent threats and 
tendencies in the received malicious activity [3]. 
In the present work, we focus on identifying the 
principal malicious activities performed against a 
low interaction network honeypot system. Such a 
method for malicious activity identification may 
be applied in different scenarios, e.g. network 
intrusion detection.

A. Data Collection
Among other logs which may provide 

interesting information about an attacker's 
action, low interaction honeypots usually collect 
information regarding the network connections 
originated and directed at them, outputting 
network flow logs. These log files represent the 
basic elements which describe a connection, 
namely: timestamp, protocol, connection 
status (starting or ending), source IP, source 
port, destination IP and destination port. The 
following line illustrates the traffic log format 
of a popular low interaction honeypot system 
implementation [17]:

It is possible to extract diverse information from 
this type of log while reducing the size of the 
analysis dataset in comparison to raw packet 
captures, which contain each packet sent or 
received by the monitored node. Furthermore, 
such information may be easily extracted from 
regular traffic capture files by aggregating 
packets which belong to the same connection, 
obtained the afore mentioned network flows



12 A Parallel Approach to PCA Based Malicious Activity Detection in Distributed Honeypot Data 
 

B. Data Analysis Methods
Various methods for honeypot data analysis 

with different objectives have been developed in 
order to accompany the increasing size of current 
honeypot systems, which are being deployed in 
progressively larger settings, comprising several 
different nodes and entire honeynets (networks 
of decoy hosts) distributed among different sites 
[6]. Most of the proposed analysis techniques 
are focused on processing traffic captures and 
malicious artefacts (e.g. exploit binaries and 
files) collected at the honeypot hosts [7]. Packet 
capture files, from which it is possible to extract 
network flow information (representing network 
traffic received and originated at the honeypot), 
provide both statistical data on threats and the 
necessary data for identifying intrusion attempts 
and attacks [18].

Classical methods for analysis of honeypot 
network traffic capture files rely on traffic 
pattern identification through file parsing with 
standard Unix tools and custom made scripts 
[16]. Basically, these methods consist of direct 
analysis of plain-text data or transferring the 
collected data to databases, where relevant 
statistical information is then extracted with 
custom queries. Such methods are commonly 
applied for obtaining aggregate data regarding 
traffic, but may prove inefficient for large volumes 
of data. Recently, distributed methods based 
on cloud infrastructure have been proposed 
for traffic data aggregation and analysis [19], 
efficiently delivering the aggregated traffic 
information needed as input for further analysis 
by other techniques.

In order to extract relevant information 
from sheer quantities of logs and collected 
data, data mining methods are applied to 
honeypot data analysis, specifically looking for 
abnormal activity and discovery of tendencies 
detection among regular traffic (i.e. noise). The 
clustering algorithm DBSCAN is applied in [9] to 
group packets captured in a honeypot system, 
distinguishing malicious traffic from normal 
traffic. Multiple series data mining is used to 
analyze aggregated network flow data in [8] in 

order to identify abnormal traffic features and 
anomalies in large scale environments. However, 
both methods require previous collection of 
large volumes of data and do not efficiently 
extract relevant statistics regarding the attacks 
targeting the honeypot with adequate accuracy.

A network flow analysis method based on 
the MapReduce cloud computing framework 
and capable of handling large volumes of data 
was proposed in [19] as a scalable alternative 
to traditional traffic analysis techniques. Large 
improvements in flow statistics computation 
time are achieved by this solution, since it 
distributes both processing loads and storage 
space. The proposed method is easily scalable, 
achieving the throughput needed to efficiently 
handle the sheer volumes of data collected in 
current networks (or honeypots), which present 
increasingly high traffic loads.This method may 
be applied to honeypot data analysis, providing 
general statistical data on the attack trends and 
types of threats.

C. Methods based on Principal Component 
Analysis

Several honeypot data analysis methods have 
been proposed in current literature, among 
them are principal component analysis (PCA) 
based techniques [12], [11]. Such methods 
aim at characterizing the type and number of 
malicious activities present in network traffic 
collected at honeypots through the statistical 
properties and distribution of the data. They are 
based on the fact that attack traffic patterns are 
more correlated than regular traffic, much like 
principal components in signal measurements. 
The first step of PCA is the estimation of the 
number of principal components. For this task, 
model order selection (MOS) schemes can be 
applied to identify significant malicious activities 
(represented by principal components) in traffic 
captures. Automatic MOS techniques are crucial 
to identify the number of the afore mentioned 
principal components in large network traffic 
datasets, this number being the model order of 
the dataset.
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Basically, the model order of a dataset is 
estimated as the number of main uncorrelated 
components with energy significantly higher 
than the rest of components. In other words, the 
model order can be characterized by a power gap 
between the main components. In the context 
of network traffic, the principal components are 
represented by outstanding network activities, 
such as highly correlated network connections 
which have, for example, the same destination 
port. In this case, the principal components 
represent the outstanding groups of malicious 
activities or attacks directed at the honeypot 
system and the model order represents the 
number of such attacks. The efficacy and 
efficiency of PCA based methods depend on the 
MOS schemes adopted, since each scheme has 
different probabilities of detection for different 
kinds of data (depending on the kind of noise 
and statistical distribution of the data itself) [14].

A method for characterizing malicious activi-
ties in honeypot traffic data through principal 
component analysis techniques was introduced 
in [11]. This method consists in mainly two 
steps, dataset preprocessing and visual inspec-
tion of the eigenvalues profile of the covariance 
matrix of the preprocessed honeypot traffic 
samples in order to obtain the number of prin-
cipal components (which indicate the outstand-
ing groups of malicious activities), i.e. the model 
order. First, raw traffic captures are parsed in 
order to obtain network flows consisting of the 
basic IP flow data, namely the five-tuple con-
taining the key fields: source address, destina-
tion address, source port, destination port, and 
protocol type. Packets received or sent during a 
given time slot (300 seconds in the presented 
experiments) which have the same key field val-
ues are grouped together in order to form these 
network flows. The preprocessing step includes 
further aggregation of network flow data, ob-
taining what the authors define as activity flows, 
which consist of combining the newly generated 
flows based upon the source IP address of the 
attacker with a maximum of sixty minutes inter-
arrival time between basic connection flows. In 

the principal component analysis step, the pre-

processed data is denoted by the p-dimensional 

vector  representing the network 

flow data for each time slot. First, the network 

flow data obtained after the preprocessing is 

transformed into zero mean and unitary vari-

ance with the following equation:

                     (1)

for , where is the sample mean and 

is the sample variance for . Then the sample 

correlation matrix of C is obtained with the 

following expression:

                      (2)

After obtaining the eigenvalues of the basic 

network flow dataset correlation matrix R , the 

number of principal components is obtained 

via visual inspection of the screen plot of 

eigenvalues in descending order. The estimation 

of the model order by visual inspection is 

performed by following subjective criteria such 

as considering only the eigenvalues greater than 

one and visually identifying a large gap between 

two consecutive eigenvalues.

The same authors proposed another meth-

od based on the same PCA technique and the 

equations described above for detecting new 

attacks in low-interaction honeypot traffic [12]. 

In the proposed model new observations are 

projected onto the residuals space of the least 

significant components and their distances 

from the k-dimensional hyperspace defined by 

the PCA model are measured using the square 

prediction error (SPE) statistic. A higher value 

of SPE indicates that the new observation rep-

resents a new direction that has not been cap-

tured by the PCA model of attacks seen in the 

historical honeypot traffic. As in the previous 

model, the model order of the preprocessed 

dataset is estimated through different criteria, 
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including visual inspection of the eigenvalues 
screen plot.

Even though those methods are computa-
tionally efficient, they are extremely prone to 
error, since the model order selection schemes 
(through which the principal components are 
determined) are based on subjective parameters 
which require visual inspection and human in-
tervention. Apart from introducing uncertainties 
and errors, the requirement for human interven-
tion also makes it impossible to implement such 
methods as an independent automatic analysis 
system. Thus these PCA based analysis methods 
are impractical for large networks, where the vol-
ume of collected data is continuously growing. 
Moreover, the uncertainty introduced by subjec-
tive human assistance is unacceptable, since it 
may generate a significant number of false posi-
tive detections.

IV. applyIng Model order selectIon to 
Honeypot data analysIs

Our method for MOS based honeypot data 
analysis bascially consists in applying state 
of the art MOS schemes to identify principal 
components of pre-processed aggregated 
network flow datasets. Each principal component 
represents a malicious activity and the number 
of such principal components (obtained through 
MOS) represents the number of malicious 
activities. In case this number is equal to zero, 
no malicious activity is present and in case it is 
greater than zero, there is malicious activity. 
Our objective in this paper is to automatically 
estimate the number of principal components 
(i.e. model order) of network flow datasets 
collected by honeypots. In this section, we 
introduce our method in details and the steps 
of data pre-processing necessary before model 
order selection is performed on the final dataset.

It has been observed that the traffic generated 
by outstanding malicious activities targeting 
honeypot systems has significantly higher 
volumes than regular traffic and is also highly 

correlated, being distinguishable from random 
traffic and background noise [11]. Due to these 
characteristics it is viable to apply model order 
selection schemes to identify the number of 
principal components which represent malicious 
activities in network traffic captured by honeypot 
systems. Assuming that all traffic directed to 
network honeypot systems is malicious (i.e. 
generated by attempts of intrusion or malicious 
activities), outstanding highly correlated traffic 
patterns indicate individual malicious activities. 
Hence, each principal component detected in a 
dataset containing information on the network 
traffic represents an individual malicious activity. 
Analysing such principal components is an 
efficient way to estimate the number of different 
hostile activities targeting the honeypot system 
and characterizing them.

In order to estimate the number of principal 
components (i.e. malicious activities) the 
application of model order selection schemes 
arises naturally as an efficient method. After an 
appropriate preprocessing of the raw network 
traffic capture data, it is possible to estimate 
the model order of the dataset thus obtaining 
the number of malicious activities. The 
preprocessing is necessary in order to aggregate 
similar connections and network flows generated 
by a given malicious activity. It is observed that, 
after applying the preprocessing described in 
the previous section, groups of network flows 
pertaining to the same activity (e.g. groups 
which represent connections to and from the 
destination and source ports, respectively) 
have high correlated traffic profiles, yielding 
only one principal component. Thus, hostile 
activities which generate multiple connections 
are correctly detected as a single activity and not 
several different events.

Our method consists in applying RADOI 
with noise pre-whitening, a state-of-the-art 
automatic model order selection scheme 
based on the eigenvalues profile of the noise 
covariance matrix, to network flow datasets after 
preprocessing the data with the aggregation 
method described in the next sub-section. 
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RADOI with noise pre-whitening was determined 
to be the most efficient method for performing 
model order selection of this type of datasets 
through experiments with real honeypot data 
where several classical and state-of-the-art MOS 
schemes were evaluated (refer to Section VII for 
the results).

Since it is generally assumed that all traffic 
received by network honeypot systems is 
malicious, the model order obtained reflects the 
number of significant malicious activities present 
in the collected traffic, which are characterized 
by highly correlated and outstanding traffic. 
In our approach, the model order d obtained 
after applying the MOS scheme is considered 
as the number of malicious activities detected 
and the d highest dataset covariance matrix 
eigenvalues obtained represent the detected 
malicious activities. Further analysis of these 
eigenvalues enables other algorithms or analysts 
to determine exactly which ports were targeted 
by the detected attacks [12].

A. Data Pre-Processing Model
Before performing model order selection on 

the collected dataset it is necessary to transform 
it in order to obtain aggregate network flow data 
which represents the total connections per port 
and transport layer protocol. The proposed pre-
processing method considers an input of network 
flow data extracted directly from log files gener-
ated by specific honeypot implementations (e.g. 
honeyd [17]) or from previously parsed and ag-
gregated raw packet capture data (such parsing 
may be easily performed via existing methods 
[11]). It is possible to efficiently implement this 
preprocessing method based on a cloud infra-
structure, providing nice scalability for large vol-
umes of data [19]. Network flow data is defined 
as lines which represent the basic IP connection 
tuple for each connection originated or received 
by the honeypot system, containing the follow-
ing fields: time stamp, transport layer protocol, 
connection status (starting or ending), source IP 
address, source port, destination IP address and 
destination port.

First, the original dataset is divided into n time 
slots according to the time stamp information 
of each network flow (n is chosen according to 
the selected time slot size). Subsequently the 
total connections directed to each m destination 
ports targeted during each time slot are summed 
up. We consider that the total connections to a 
certain destination port m during a certain time 
slot n is represented as follows: 

                 
(3)

where  is the measured data in the 
port,  is the component related to the 
outstanding malicious activities and  
is the noise component, mainly consisting of 
random connections and broadcasts sent to port 
m. Note that in case that no significant malicious 
activity is present, the traffic is mostly composed 
of port scans, broadcasts and other random 
non-malicious network activities, for instance. 
Therefore, the noise presentation fits well in (3).

In the matrix form, we can rewrite (3) as 

                                        (4)

Where  is the total number of con-
nections directed to  ports during  time slots. 
Particularly, if a certain port  has not been 
targeted by outstanding malicious activities, 
the  line of  is fulled with zeros. On the 
other hand, if a certain  host is responsible 
for a malicious activity resulting in connections 
to  ports, these ports have a malicious traffic 

 highly correlated. Therefore, math-
ematically,  is given by 

                          (5)

where  is a zero padding matrix, such 
that the product  by  inserts zero lines in the 
ports without significant malicious activities. The 
total number of hosts with malicious traffic is 
represented by d. In an extreme case, when each 
line of  has very high correlation, the rank of  
is 1. Therefore, the rank of  is d which is also 
known in the literature as model order or the to-
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tal number of principal components, represent-
ing the total number of outstanding malicious 
activities detected in the honeypot dataset.

In order to represent the correlated traffic of 
the malicious traffic, we assume the following 
model 

                            (6)

where  represents totally uncorrelated 
traffic and  is the correlation matrix 
between the ports. Note that if the correlation is 
not extremely high, the model order   represents 
the sum of the number of uncorrelated malicious 
activities of all hosts which interacted with the 
honeypot environment. Therefore, the model 
order  is at least equal to the total number of 
malicious hosts.

 The correlation matrix of  defined in (4) is 
computed as 

               (7)

where  is the expected value operator and 
 is valid for zero mean white 

noise, where  is the variance of the noise 
samples in (3). Note that we assume that 
the network flows generated by outstanding 
malicious activities are uncorrelated with the 
rest of traffic.

V. Model order selectIon scHeMes

Several model order selection schemes exist, 
each of them with different characteristics 
which may affect their efficacy when applied to 
network traffic data. In this section, we present 
an overview of model order selection schemes 
and propose the necessary modifications in 
order to apply those schemes to malicious 
activity identification in honeypot data.

Usually, model order selection techniques 
are evaluated by comparing the Probability of 
Correct Detection or PoD (i.e. the probability 
of correctly detecting the number of principal 
components of a given dataset) of each technique 

for the type of data that is being analysed, since 

the different statistical distributions, noise and 

characteristics of specific datasets may alter 

the functioning and accuracy of different MOS 

schemes [14]. In other words, it is necessary to 

evaluate different MOS schemes with different 

characteristics in order to determine which MOS 

scheme is better suited for detecting malicious 

activities in honeypot network flow data. In this 

sense, we propose methods based on different 

schemes and evaluate them in the experiments 

presented in the next section.

In Subsection V-A, we show a brief review 

of the  Akaike's Information Criterion (AIC) 

[20], [13] and  Minimum Description Length 

(MDL) [20], [13], which are classical MOS 

methods, serving as a standard for comparing 

and evaluating novel MOS techniques and 

applications. Since RADOI [21] is one of the most 

robust model order selection schemes mainly 

for scenarios with colored noise, we propose 

the RADOI together with a noise prewhitening 

scheme in Subsection V-B.

 Considering data preprocessed with the 

procedures described in the previous section, 

our method proceeds to performing model 

order selection of the dataset obtained. Similarly 

to [11], we also apply the zero mean in the 

measured sample. Therefore,

       (8)

where the vector  has all temporal sam-

ples of network flows directed to the port  

is the mean value, and  contains the zero 

mean temporal samples. Such procedure is ap-

plied for each group of network flows directed to 

a single port in order to obtain . By applying 

(8), the assumption that the samples have zero 

mean is fulfilled.

The techniques shown here are based on 

the eigenvalues profile of the noise covariance 

matrix . Since the covariance matrix is not 

available, we can estimate it by using samples 

of the traffic. Therefore, we can approximate the 

covariance matrix to the following expression 
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                 (9)

where  is an estimate of  . In contrast to [11], 

we do not apply the unitary variance reviewed 

in (1), since the variance, which is the power of 

the components, is an useful information for the 

adopted model order selection schemes. 

The eigenvalue decomposition of  is given by

                     (10)

where  is a diagonal matrix with the eigenvalues 

 with  and the matrix 

has the eigenvectors. However, for our model 

order selection schemes, only the eigenvalues 

are necessary.

A. 1-D AIC and 1-D MDL

In AIC, MDL and Efficient Detection Criterion 

(EDC) [22], the information criterion is a function 

of the geometric mean, , and arithmetic 

mean, , of the  smallest eigenvalues of (10) 

respectively, and  is a candidate value for the 

model order .

In [23], we have shown modifications of AIC 

and MDL for the case that , which we 

have denoted by  and . These 

techniques can be written in the following 

general form

                (11)

where  represents an estimate of the model 

order . The penalty functions for  and 

 are given by  and 

 respectively. Accor-

ding to [13] , while according to 

[23], we should use , and .

B. RADOI with Noise Prewhitening

The RADOI model order selection scheme is 

an empirical approach [21]. Here we propose to 

incorporate the noise prewhitening to the RADOI 

scheme in order to improve its performance. 

In order to apply the noise prewhitening, first 

samples containing only noise traffic are 

collected. Such noise samples can be obtained 

from  ports where no significant malicious 

activities are observed. In practice, we can 

select the  ports with lowest traffic rates (i.e. 

ports which received an insignificant number 

connections during the time span observed, for 

example, less than 1 connection per minute). 

By using the noise samples, we compute an 

estimate of the noise correlation matrix

                  (12)

where  contains the zero mean noise 

samples computed similarly as in (8). With , 

the noise prewhitening matrix can be computed 

by applying the Cholesky decomposition

                               (13)

where  is full rank.

The noise prewhitening of  is given by

                               (14)

We compute the eigenvalues  of the 

covariance matrix of  and we apply them on 

the RADOI cost function, which is given by

 where                        (15)

 
(16)

where

and  is given by

              
(17)

In [21], it is shown that RADOI outperforms 

the Gerschgoerin disk estimator (GDE) criterion 
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[25] in the presence of colored noise, while its 
performance in the presence of white noise is 
similar to the GDE criterion.

VI. IMproVIng perforMance  
In parallel enVIronMents

The previous pre-processing and MOS 
analysis methods are fit for small and medium 
sized environments with few honeypot systems 
collecting data and consequently generating 
moderate quantities of network flow data 
for subsequent analysis. However, in current 
enterprise network environments, it is often 
necessary to set up many honeypot systems 
distributed across different network portions 
in order to capture all relevant activities. In 
such an environment, the quantities of data 
generated may increase exponentially and 
overwhelm centralized data analysis solutions. 
In order to construct a scalable honeypot data 
analysis system, a promising approach consists 
in applying parallel processing techniques that 
distribute data analysis across several computer 
nodes that concurrently perform the necessary 
computation, thus increasing system velocity 
and capacity.

A trivial method to parallelize our techniques 
consists in aggregating the data collected by 
different honeypot systems at a central location 
and then distributing slices of data to individual 
computer nodes, that then run our analysis 
algorithms (pre-processing and MOS schemes) 
on their assigned data. The results are then 
aggregated at a central node. An analogous 
alternative is simply using parallel algorithms to 
compute the pre-processing and MOS scheme 
operations on the centralized data, distributing 
the computation (as opposed to data) to the 
computer nodes in a cluster. However, both 
of these direct approaches have a common 
shortcoming. In both cases, it is necessary to 
first transfer vast amounts of data to a central 
location in the network in order to start the 
analysis and then redistributed this data to the 

cluster nodes, which adds a huge communication 
overhead to the overall solution while degrading 
performance. Formally, we consider that the 
total quantity of data collected by   honeypots 
in the network is given by:

                          (18)

where  is the data matrix of the  node. In 
this approach, the  node transmits its  by 
data matrix  to the central node. Therefore, a 
data overhead of  is foreseen. Note that 
usually . The central node then computes the 
eigenvalues of the sample covariance matrix .

Fortunately, it is possible to build on 
characteristics of our data model and the 
underlying MOS schemes to perform distributed 
analysis of the collected data without having to 
transfer it between different nodes. We propose 
instead an architecture where each node locally 
computes the eigenvalue decomposition of the 
sample covariance matrix corresponding to its 
locally collected data. The nodes then transmit 
only the diagonal vector of the resulting eigenvalue 
matrix to a central node, which aggregates the 
individual eigenvalue and estimate the model 
order of the full datatset employing global 
eigenvalue techniques [26], [23], [27]. A similar 
approach for locally processing network data in 
collection nodes is also presented in [15], where 
the authors adapt the MapReduce framework to 
enable nodes to perform local computation on 
their local data and then aggregate the result, 
instead of transfering data to a central local 
that then redistributes it to the worker nodes. 
Apart from improving network performance, this 
technique also results in a larger gap between 
eigenvalues, increasing overall probability of 
detection, making it more efficient in detecting 
attacks and less prone to false negatives.

This method is formalized as follows. We con-
sider a scenario where  nodes are continuously 
collecting traffic and generating  as de-
scribed in Section IV-A. After a certain number  
of collection time slots, the total data collected by 
the nodes consists in   data matrices  
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for . In the end of the collection period 
of  time slots, each  node then computes 
the sample covariance matrix  for its locally 
collected data . Notice that, at this point, the 
trivial next step would be for each  node to 
simply send its sample covariance matrix  to 
a central node that would perform the remaining 
steps in estimating the model order.

                       (19)

where  is the sample covariance matrix of . 
In this case, since the sample covariance matrix 
is transmitted the data overhead is . 
Note that mathematically we obtain the same 
eigenvalues via (18) or via (19). Therefore, (19) 
should be preferentially used due to the reduced 
overhead. On the other hand, we avoid the ex-
cessive data transfers by requiring that each  
node computes the eigenvalue decomposition 
of , obtaining the eigenvalue matrix . Fi-
nally, each node transfers only the diagonal ei-
genvalue vector , instead of the complete 
sample covariance matrix . The central node 
then aggregates each individual eigenvalue vec-
tor  into a global eigenvalues vector , 
which is used to estimate model order through 
RADOI.  is obtained as follows:

                     (20)

Notice that in this approach, each node is only 
required to transfer vectors of  real numbers 
representing the eigenvalues. If the full data ma-
trix or the local sample covariance matrix were 
transmitted, it would be necessary to transfer 

 or  real number values, respectively. 
This represents a factor  or a factor  decrease 
in the total size of transmitted data, in compari-
son to transmitting the full data matrix or the 
local sample covariance matrix, respectively. No-
tice that even if N increases, meaning that the 
resolution is increased with more samples being 
taken for each time period, the size of the trans-

mitted data is the same. In practice, it means 

that the local resolution of each sensor does not 

affect the total quantity of data that needs to be 

transmitted for the central node for analysis.

VII. sIMulatIons

In this section, we describe a series of experi-

ments that were performed in order to validate 

our proposed scheme for detection of malicious 

activities in honeypot network traffic. Through-

out this section we consider a dataset collected 

at a large real world honeypot installation. First, 

in Subsection VII-B, we manually determine the 

number of attacks in the experimental dataset 

and then analyse the data preprocessing mod-

el. In Subsection VII-C, we compare the perfor-

mance of several model order selection schemes 

presented in Section V, determining that RADOI 

with zero mean and noise pre-whitening is the 

most efficient and accurate method for analys-

ing such data.

 A. Experimental Environment

In the experiments presented in this section 

we consider a dataset containing network flow 

information collected by a large real world 

honeyd virtual network honeypot installation. 

The reader is referred to [14], [13] in order to 

check the performance of the MOS schemes for 

simulated data. Extensive simulation campaigns 

are performed in [14], [13].

Honeyd is a popular framework which imple-

ments virtual low interaction honeypots simu-

lating virtual computer systems at the network 

level [17]. The simulated information system 

resources appear to run on unallocated net-

work addresses, thus avoiding being accessed 

by legitimate users. In order to deceive network 

fingerprinting tools and honeypot evasion meth-

ods, honeyd simulates the networking protocol 

stack of different operating systems. It is also 

capable of providing arbitrary network services 

and routing topologies for an arbitrary number 

of virtual systems.
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Among other monitoring and management re-
lated data, honeyd automatically generates net-
work activity logs in the form of network flow data 
as described in Section III-A. A dataset comprised 
of such network flow logs is analysed in the fol-
lowing experiments. For experimental purposes, 
the data preprocessing model and the different 
model order selection schemes were numerically 
implemented, providing accurate results. How-
ever, the issues of efficiency [28], [29] and scal-
ability [19] for large volumes of data are not ad-
dressed, which is left as subject for future works.

Figure 1: Traffic over  different ports vs  time slots. Each 
time slot spans 10 minutes. The total amount of  ports and 
the total amount of  time slots are 29 and 37, respectively.

B. Data model fitting based on collected data
It is necessary to manually analyse the experi-

mental dataset in order to obtain an accurate es-
timate of the number of attacks that it contains. 
Notice that this manual analysis is not part of 
the proposed method, which is completely auto-
matic. The results obtained in this analysis are 
merely utilized as a reference value to be com-
pared with the results obtained by the different 
MOS schemes in the process of validating our 
automatic results.

Besides the number of connections per port, 
this manual analysis takes into consideration 
common knowledge on which services are most-
ly targeted in such attacks. First, we are inter-
ested in obtaining summarized information on 
the total number of connections per port. Thus, 
we evaluate our proposed data preprocessing 
model, obtaining a preprocessed summarized 
dataset from the original network flow data.

A time slot of 10 minutes is considered, 
with data collection starting at at 2007-08-02-
13:51:59 and spanning approximately 370 min-
utes (or 37 slots). During the data collection pe-
riod considered, network activities targeting 29 
different TCP and UDP ports were observed, thus 
yielding a preprocessed data matrix  
with  different ports and  time 
slots, representing the total number of connec-
tions directed to or originated from the  ports 
during each of the  time slots. In Fig. 1, the 
preprocessed data matrix is depicted, provid-
ing graphical information on the traffic profiles. 
Although it is not possible to distinguish all 
curves, notice that some ports have outstand-
ingly higher traffic while the traffic profile per-
taining to the rest of the ports are close to zero, 
behaving akin to noise. Thus, we show that some 
traffic profile curves are significantly higher than 
others due to the attacks directed at them. Once 
again note that this is not part of the blind auto-
matic method proposed, serving only as a refer-
ence for our experiments.

According to Fig. 1, the traffic profiles of 
some ports clearly indicate malicious activities 
and attacks. By manually analysing the collected 
network flow data and visually inspecting the 
traffic plot, it is possible to determine that a 
threshold of more than an average of 100 con-
nections per 10 minutes time slots to a certain 
port during the observed time span indicates 
malicious activities. Traffic profiles of less than 
an average of 100 connections per 10 minutes 
to a given port (or 0.17 connections per sec-
ond) are considerably less than the number of 
connections to the highly attacked ports, being 
considered noise and not indicating significant 
malicious activities. Therefore, we conclude that 
outstanding malicious activities are observed on 
ports , that in Fig. 1 respec-
tively correspond to the following ports: TCP 
1080, TCP 445, TCP 1433, TCP 135, TCP 8555, 
TCP 23293, and TCP 17850.

Further analysis of the traffic profile of each 
port indicates that the pair of ports TCP 135 and 
TCP 23293 are destination and source ports for 
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the same connections respectively. Therefore, 

their traffic profiles are almost identical, i.e., 

highly correlated. The ports TCP 445 and TCP 

8555 are also destination and source ports for 

a certain group of connections, as well as the 

ports TCP 1433 and TCP 17850. The destination 

ports of the pairs described before along with 

TCP port 1080 are typically opened by common-

ly probed and attacked services, which explains 

the intense activity observed and confirms the 

hypothesis that the traffic directed to those 

ports actually represents malicious activities.

Although a high level of network activity is 

observed in 7 different ports, 3 pairs have very 

highly correlated patterns and for this reason 

can be considered as only 3 main components 

(representing 3 different significant malicious 

activities which, in this case, are easily 

identifiable as attacks to services commonly 

present in popular operating systems and 

network equipment). Hence, given the traffic 

profile in Fig. 1 we conclude that the model order 

for the dataset being analysed in the following 

experiments is equal to 4, since it is the number 

of malicious activities or attacks identified after 

manually analysing network data.

In Fig. 2, the traffic profile of all ports which 

received or originated less than an average of 

100 connections per time slot is depicted. Notice 

that, once again, it is not possible to distinguish 

the traffic profiles but this figure clearly shows 

that traffic not generated by attacks behaves like 

random noise. Thus, the traffic in those ports 

is considered noise (generated by broadcast 

messages, faulty applications and other random 

causes) and we consider, therefore, that it 

does not characterize malicious activities. This 

analysis is not part of the method proposed, 

serving only as reference for analysing our 

experiments.

Based on the data model presented in Section 

IV, the data shown in Fig. 2 is that of the noise 

components represented by matrix . 

Note that since  and m= 1, 2, 7, 8, 12, 15, 

20 , the zero padding matrix  described 

in (5) which indicates the ports with outstanding 

malicious activities has  only for the 

following values of (i, k) = {(1,1), (2,2) (7,3), 

(8,4), (12,5), (15,6) (20,7)}, otherwise, .

Figure 2: Noise traffic over  ports vs  time slots  
(  and ). This traffic profile represents 
noise which does not indicate significant malicious 
activities.

We now compute the eigenvalues of the cova-

riance matrix of obtained from the preprocessed 

dataset depicted in Fig. 1 and the eigenvalues 

of the covariance matrix of obtained from the 

noise only components of the preprocessed da-

taset depicted in Fig. 2. The eigenvalue profiles 

of the covariance matrices obtained from the full 

preprocessed dataset and the noise only compo-

nents of are depicted in Fig. 3 and in Fig. 4, re-

spectively. Comparing both eigenvalues profiles 

in log scale, the eigenvalues in Fig. 4 which do 

not represent malicious activities fit much better 

to the linear curve than the eigenvalues which 

indicate outstanding malicious activities.1 In ad-

dition, by visual inspection, it is possible to esti-

mate the model order in the malicious traffic in 

Fig. 3, which is clearly equal to 4 (as indicated 

by the break up in the linear eigenvalues profile, 

which behaves as a super-exponential profile).

1 The exponential profile of the noise eigenvalues is a characteristic 
already observed in the literature.[30], [31], [23]
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Figure 3: Malicious activity traffic plus noise eigenvalues 
profile compared to the linear fit. Plot of the logarithm base 
10 of the eigenvalues  vs the index  of the eigenvalues. 
The total of eigenvalues is . The 
covariance matrix is computed via obtained from the 
complete preprocessed dataset shown in Fig. 1.

After analysing the eigenvalue profile in Fig 

3, the raw collected honeypot network activity 

logs and the traffic profiles obtained in the 

preprocessed dataset it is possible to consistently 

estimate the model order as 4. While the traffic 

profile and the network activity logs indicate a 

high level of network activity in certain ports, 

further analysis of the collected data confirms 

that the connections to such ports pertain to 

4 significant malicious activities, since the 4 

destination ports targeted are typically used 

by commonly probed and attacked services. 

Furthermore, the break up in the eigenvalue 

profile of the covariance matrix obtained from 

the full preprocessed dataset also indicates that 

the model order is 4. Therefore, we conclude 

that the model order of the dataset used for the 

experiments proposed in this section is equal to 

4, and consider this value as the correct model 

order for evaluating the accuracy of the several 

MOS schemes tested in the remainder of this 

section.

As shown in this subsection, it may be 

possible to estimate the model order by visual 

inspection, manually determining the amount of 

malicious activities present in the dataset. Note 

that it was necessary to correlate raw collected 

network data, traffic profiles and information on 

common attacks in order to verify the correctness 

of the estimated model order. However, by visual 

inspection, the model order estimation becomes 

subjective, i.e., the model order of a same 
eigenvalue profile may vary for each person 
who inspects it, introducing an unacceptable 
uncertainty in the malicious activity identification 
process. Since the PoD of human dependent MOS 
schemes varies uncontrollably, it is impossible 
to guarantee a minimal probability of correctly 
detecting attacks and an average false positive 
percentage. Moreover, for real time applications 
and scenarios involving large quantities of data, 
it is necessary to employ an automatic scheme 
to estimate the model order.

Figure 4: Noise only eigenvalues profile compared to the 
linear fit. The total of eigenvalues is 
. The covariance matrix is computed via obtained from the 
noise only preprocessed dataset shown in Fig. 2.

C. Model order selection on the preprocessed 
dataset

In several scenarios it is not possible to visually 
identify the malicious traffic. However, in our 
data, this is possible. Therefore, in Section VII-B, 
we estimate the amount of malicious traffic, i.e., 
the model order, through human intervention. 
Once the model order is known for our measured 
data from Section VII-B, we can apply our model 
order selection schemes presented in Section V. 
In this section, we verify the performance of these 
model order selection schemes, determining that 
RADOI with zero mean and noise pre-whitening 
is the most efficient and accurate method for 
analysing such data.

First, the zero mean zero mean is applied to 
the preprocessed dataset according to (8). After 
the application of zero mean (8) in the dataset 
shown in Fig. 1, the total amount of connections 
directed and originated from each port assumes 
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negative values, which have no physical meaning 
but affect the PoD of several MOS schemes. The 
effect on the eigenvalues profile is almost insig-
nificant when comparing the pure preprocessed 
dataset to the dataset after the application of 
zero mean. However, the accuracy of the model 
order selection schemes may vary when the zero 
mean is applied, even though it is insignificant 
for visual inspection purposes.

Note that the eigenvalues profiles obtained 
for the noise only and full dataset cases after 
applying the zero mean have similar character-
istics to the eigenvalues profiles obtained for 
the preprocessed data before applying the zero 
mean, in the sense that the eigenvalues which 
do not represent malicious activities fit much 
better to the linear curve than the eigenvalues 
which indicate outstanding malicious activities. 
Moreover, it is also possible to clearly estimate 
the model order as 4 by visual inspection of the 
signal plus noise eigenvalues profile after zero 
mean.

Having preprocessed the original network 
flow dataset, applied the zero mean in the noise 
only dataset and applied the zero mean in the 
full dataset, we now proceed to actually estimat-
ing the model order of the original dataset. In 
order to evaluate each MOS scheme the model 
orders of both the full dataset (containing both 
noise and outstanding traffic) and the noise only 
dataset are estimated. In these experiments we 
estimate the model order using the following 
MOS schemes: 1-D AIC [20], [13], 1-D MDL [20], 
[13], efficient detection criterion (EDC) [22], Na-
dakuditi Edelman Model Order selection scheme 
(NEMO) [24], Stein's unbiased risk estimate 
(SURE) [32], RADOI [21] and KN [33].

Finally, the model order of the complete da-
taset after applying the zero mean is estimated, 
yielding the results shown in Table I.

Table 1: Model order selection via the eigenvalues of the 
covariance matrix of the signal plus noise samples.

AIC MDL EDC SURE RADOI RADOI 
w/ PKT KN NEMO

21 21 13 11 3 4 11 13

In Table I, note that RADOI with prewhiten-
ing returns the correct estimation of the model 
order while the other MOS schemes fail. In other 
words, RADOI correctly detects the number of 
attacks in the analysed dataset. These results 
validate our assumption that RADOI can suc-
cessfully detect attacks in network traffic flow 
data obtained in honeypot systems, since it cor-
rectly estimates the model order as the number 
of attacks present in the dataset. Hence, we con-
clude that RADOI has the best performance in 
real world honeypot network flow data analysis 
via PCA.

D. Simulating the Parallel Processing Approach
In order to validate the approach for estimat-

ing the model order of the analysis dataset par-
allely as described in Section VI, simulation ex-
periments were performed. These experiments 
show that the threshold between eigenvalues in-
creases as expected, while the total data transfer 
dramatically decreases. In these experiments we 
compare the global eigenvalues profile obtained 
by the parallel method described in the previous 
section with the eigenvalue profiles obtained by 
three trivial approaches for distributed honeypot 
data model order estimation. We consider a sce-
nario with  nodes, model order  and 
traffic to  ports collected over  10 
minute time slots. The signal and noise samples 
are i.i.d. zero mean Gaussian and the SNR is de-
fined as

            (21)

where  is the signal variance and  is the 
noise variance. Figure 5 depicts the results 
of our simulation. The first curve illustrates 
the eigenvalue profile obtained by simply 
concatenating the data obtained from different 
nodes according to (18), the second curve 
illustrates the eigenvalue profile that arises from 
analysing the mean sample covariance matrix 
obtained from the local sample covariance 
matrix of each node according to (19), and the 
third curve illustrates the eigenvalue profile 



24 A Parallel Approach to PCA Based Malicious Activity Detection in Distributed Honeypot Data 
 

obtained from the sample covariance matrix of 
only one node.

Notice that the fourth curve, which represents 
the global eigenvalues profile obtained according 
to (19), displays a much more significant gap 
between the signal and noise eigenvalues. The 
gap in Figure 5 is significantly bigger than 
the gap observed in Figure 3. Such a contrast 
shows that, besides increasing performance and 
scalability for large environments, our parallel 
detection approach also improves the probability 
of detection.

Figure 5: Comparison between global eigenvalues profile 
and eigenvalue profiles from different approaches with K = 
10 nodes, model order d = 3 and traffic to M = 29 ports 
collected over NG = 37 10 minute time slots.

VIII. conclusIons

In this paper we present a blind automatic 
method for detecting malicious activities and 
attacks in network traffic flow data collected at 
honeypot systems. First we propose a dataset 
preprocessing model for network flow data 
obtained by many honeypot systems and we 
verify the validity of our approach through 
simulation results with real log files collected at 
a honeypot system in operation at the network 
of a large banking institution. Several model 
order selection methods are experimented with 
the preprocessed simulation data, showing that 
RADOI yields the best results for this type of 
data.

The presented methods are further improved 
by utilizing a model order selection parallelization 

approach that distributes computational load 
between nodes in a cluster. In this case, the raw 
tcp flow data is distributed among cluster nodes, 
which then locally apply the EVD to the sample 
covariance matrix of their assigned portions of 
data. The diagonal vector of the eigenvalues 
matrix is transmitted to a central node where 
the global eigenvalues are computed and the 
model order is estimated based on RADOI. This 
approach also allows for local data processing in 
the data collection nodes, eliminating the need 
for a dedicated cluster and increasing efficiency, 
since only the obtained eigenvalues have to be 
transmitted to a central node.

Honeypot traffic flow data behaves like 
measurements in signal processing, in the 
sense that if the traffic in honeypots does not 
represent significant attacks, the eigenvalues 
of the covariance matrix of the traffic samples 
have an exponential profile, linear in log scale. 
On the other hand, if connections are highly 
correlated (indicating significant malicious 
activities), a break appears in the exponential 
curve of the eigenvalues profile of the traffic 
samples covariance matrix. This break in the 
exponential curve profile indicates the model 
order which, in this case, represents the number 
of significant malicious activities observed in 
the honeypot data. The principal components 
and eigenvalues obtained can also be further 
analysed for identifying the exact attacks which 
they represent depending on which ports they 
are related to.

Since it does not require previous collection 
of large quantities of data nor adaptive learning 
periods, the solution proposed in the present 
work is an interesting alternative to classical 
honeypot data analysis methods, such as data 
mining and artificial intelligence methods. Since 
it is solely based on the correlation between 
network flows, it is capable of automatically 
detecting attacks in varying volumes of honeypot 
traffic without depending on human intervention 
or previous information. Thus, it eliminates the 
need for attack signatures and complex rule 
parsing mechanisms. As a future work, we point 
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out further experimentation with other model 
order selection schemes in order to obtain an 
attack detection method that yields correct 
results even when malicious activities are not 
present in the analysed dataset (i.e. yield model 
order equal to zero).
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